Skip to main content

Advertisement

Log in

Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): an updated review from 2016 to 2021

  • Review Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Fungi are eukaryotic organisms that have the ability to synthesize an enormous number of metabolites with a vast diversity of chemical structures and bioactivities. Chaetomiaceae species are a wealthy source of enzymes with diverse biotechnological and industrial applications such as PMO (polysaccharide monooxygenase), L-methioninase, β-1,3-glucanase, laccase, dextranase, lipolytic, pectinolytic, amylolytic, chitinolytic, and proteolytic enzymes. Different classes of secondary metabolites have been reported from this family are derived from various biosynthetic pathways such as alkaloids, polyketides, peptides, terpenes, and polyketide-amino acid hybrid secondary metabolites. These metabolites have attracted research interest due to their fascinating structural frameworks and bioactivities. Therefore, these compounds can be taken into account as candidates for the development of effective and novel lead compounds for medicine, as well as for plant protection. The current review represents the relevant information for Chaetomiaceae species, in particular, its new and first reported secondary metabolites and their pharmacological activities, as well as the biotechnological applications published from 2016 until the beginning of 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A431:

human epidermoid carcinoma

A-549:

human lung carcinoma

AAI:

α-amylase inhibitory

ABTS:

2:2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)

AChE:

acetylcholinesterase

AGI:

α-glucosidase inhibitory

AGS:

human gastric cancer cell line

ARTP:

atmospheric and room temperature plasma treatment

B16F10:

mouse melanoma

BEAS-2B:

human pulmonary epithelial cell line

BHT:

butylated hydroxytoluene

Caco-2:

human colorectal adenocarcinoma cell lines

CCK-8:

cell counting kit-8

CgAuNPs:

C. globosum gold nanoparticles

Con A:

concanavalin A

CT26:

murine colon carcinoma cell line

COX-2:

cyclooxygenase-2

DP:

degree of polymerization

DPPH:

2:2-diphenyl-1-picrylhydrazyl

EC50 :

half maximal effective concentration

EGF:

epidermal growth factor

EMS:

ethyl methyl sulfone

FACS:

fluorescence-activated cell sorting

H292:

human lung cancer cell

HEK 293:

human embryonic kidney

HeLa:

human cervix cancer cell line

Hep-2:

human epithelial type 2

Hep3B:

human hepatoma liver carcinoma

HepG2:

human hepatocellular liver carcinoma

HL-60:

human promyelocytic leukemia cell line

H460:

human large cell lung cancer cell

HCT-8:

human cecal adenocarcinoma cell

HO8910:

human ovarian carcinoma cell line

HT1080:

human fibrosarcoma cell line

HT29:

human colon carcinoma cell line

Huh7:

human hepatoma cell line

IC50 :

concentration required to inhibit cell growth by 50%

IL-1β:

interleukin 1 beta

IL-6:

interleukin 6

IR:

inhibition ratio

IZD:

inhibition zone diameter

K562:

chronic myelogenous leukemia

KB:

human epidermoid carcinoma cell line

L5178Y:

mouse lymphoma

LMW:

low molecular weights

LNCaP:

human prostate cancer cells

L-NMMA:

L-NG-monomethyl arginine

LOX:

lipoxygenase

LPS:

lipopolysaccharide

MABA:

microplate alamar blue assay

MCF-7:

human breast adenocarcinoma

MDA-MB-231:

human breast cancer cells

MGC-803:

human gastric cancer cell line

MIC:

minimum inhibitory concentration

MM231:

human breast cancer cell line

MMP:

mitochondrial membrane potential

MRSA:

methicillin-resistant Staph. aureus

MRSA-1:

methicillin-resistant Staph. aureus ATCC 43300

MRSA-2:

methicillin-resistant Staph. aureus CGMCC 1.12409

MTS:

3-(4:5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium

MTT:

(3-(4:5-dimethylthiazol-2-yl))-2:5-diphenyl-2H-tetrazolium bromide

NB4:

human leukemia cell lines

NCI-H187:

human small cell lung cancer

NCM460:

normal colonic epithelial cell

NO:

nitric oxide

PARP:

poly (ADP-ribose) polymerase

PGE-2:

prostaglandin E2

PT:

prothrombin time

PMO:

polysaccharide monooxygenase;

RAW264.7:

murine macrophage cell line

ROS:

reactive oxygen species

SGC-7901:

human gastric cancer cells line

SMMC-7721:

human papillomavirus-related endocervical adenocarcinoma

SW1990:

human pancreatic cancer cell line

SW-480:

human colon adenocarcinoma

TB:

Mycobacterium tuberculosis

TNF-α:

tumor necrosis factor-α

TRAIL:

tumor necrosis factor–related apoptosis-inducing ligand

U-2OS:

human osteosarcoma cell line

U87MG:

human glioblastoma cell line

XO:

xanthine oxidase

References

  • Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5:4

    Article  Google Scholar 

  • Akone SH, Mándi A, Kurtán T, Hartmann R, Lin W, Daletos G, Proksch P (2016) Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through ungalebacterial co-culture and epigenetic modification. Tetrahedron 72:6340–6347

    Article  CAS  Google Scholar 

  • An L, Li CP, Zhang H, Wang ML, Kong LY, Yang MH (2020) Four cytochalasin alkaloids produced by Chaetomium globosum. Tetrahedron Lett 61:151838

    Article  CAS  Google Scholar 

  • Ancheeva E, Küppers L, Akone SH, Ebrahim W, Liu Z, Mándi A, Kurtán T, Lin W, Orfali R, Rehberg N, Kalscheuer R, Daletos G, Proksch P (2017) Expanding the metabolic profile of the fungus Chaetomium sp. through co-culture with autoclaved Pseudomonas aeruginosa. Eur J Org Chem 2017:3256–3264

    Article  CAS  Google Scholar 

  • Ancheeva E, Mándi A, Király SB, Kurtán T, Hartmann R, Akone SH, Weber H, Daletos G, Proksch P (2018) Chaetolines A and B, pyrano[3,2-f]isoquinoline alkaloids from cultivation of Chaetomium sp. in the presence of autoclaved Pseudomonas aeruginosa. J Nat Prod 81:2392–2398

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Morita S, Taniguchi T, Monde K, Oshima Y (2016) Epigenetic stimulation of polyketide production in Chaetomium cancroideum by an NAD+-dependent HDAC inhibitor. Org Biomol Chem 14:646–651

    Article  CAS  PubMed  Google Scholar 

  • Baccile JA, Le HH, Pfannenstiel BT, Bok JW, Gomez C, Brandenburger E, Hoffmeister D, Keller NP, Schroeder FC (2019) Diketopiperazine formation in fungi requires dedicated cyclization and thiolation domains. Angew Chem Int Ed Eng 58:14589–14593

    Article  CAS  Google Scholar 

  • Benhassine S, Kacem CN, Destain J (2016) Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the east of Algeria. Afr J Biotechnol 15:207–213

    Article  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–520

    Article  CAS  PubMed  Google Scholar 

  • Bills GF, Gloer JB (2017) Biologically active secondary metabolites from the fungi. The Fungal Kingdom 1087–1119

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl Environ Microbiol 64:3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Wang J, Zhu H, Wang J, Xue Y, Wei G, Guo Y, Tan D, Zhang J, Yin C, Zhang Y (2016a) Chaephilones A and B, two new azaphilone derivatives isolated from Chaetomium globosum. Chem Biodivers 13:422–426

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Tong Q, Zhu H, Tan D, Zhang J, Xue Y, Yao G, Luo Z, Wang J, Wang Y, Zhang Y (2016b) Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci Rep 6:18711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen J, Geng Z, Wang M, Liu N, Li D (2018) Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Biotechnol Biofuels 11:1–16

    Article  CAS  Google Scholar 

  • Cheng L, Zheng X, Li Q, Wei MS, Chen CM, Zhu HC, Zeng CL, Hao XC, Zhang YH (2021) Armochaetoglasins J and K: new cytochalasans from Chaetomium globosum. Nat Prod Res 1-7 https://doi.org/10.1080/14786419.2021.1872568

  • Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M (2018) Two new cellulolytic fungal species isolated from a 19th-century art collection. Sci Rep 8:1–9

    Article  CAS  Google Scholar 

  • Fatima N, Muhammad SA, Khan I, Qazi MA, Shahzadi I, Mumtaz A, Hashmi MA, Khan AK, Ismail T (2016) Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol Plant 38:136

    Article  CAS  Google Scholar 

  • Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Adv 3:18228–18247

    Article  CAS  Google Scholar 

  • Gao W, Sun W, Li F, Chai C, He Y, Wang J, Xue Y, Chen C, Zhu H, Hu Z, Zhang Y (2018) Armochaetoglasins A-I: cytochalasan alkaloids from fermentation broth of Chaetomium globosum TW1-1 by feeding L-tyrosine. Phytochemistry 156:106–115

    Article  CAS  PubMed  Google Scholar 

  • Gao W, He Y, Li F, Chai C, Zhang J, Guo J, Chen C, Wang J, Zhu H, Hu Z, Zhang Y (2019) Antibacterial activity against drug-resistant microbial pathogens of cytochalasan alkaloids from the arthropod-associated fungus Chaetomium globosum TW1-1. Bioorg Chem 83:98–104

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Chai C, Li XN, Sun W, Li F, Chen C, Wang J, Zhu H, Wang Y, Hu Z, Zhang Y (2020) Two anti-inflammatory chlorinated azaphilones from Chaetomium globosum TW1-1 cultured with 1-methyl-l-tryptophan and structure revision of chaephilone C. Tetrahedron Lett 61:151516

    Article  CAS  Google Scholar 

  • Guo ZL, Zheng JJ, Cao F, Wang C, Wang CY (2017) Chemical constituents of the gorgonian-derived fungus Chaetomium globosum. Chem Nat Compd 53:199–202

    Article  CAS  Google Scholar 

  • Guo QF, Yin ZH, Zhang JJ, Kang WY, Wang XW, Ding G, Chen L (2019) Chaetomadrasins A and B, two new cytotoxic cytochalasans from desert soil-derived fungus Chaetomium madrasense 375. Molecules 24:3240

    Article  CAS  PubMed Central  Google Scholar 

  • Hamed SR, Abo Elsoud MM, Mahmoud MG, Asker MMS (2016) Isolation, screening and statistical optimizing of L-methioninase production by Chaetomium globosum. Afr J Microbiol Res 10:1513–1523

    Article  CAS  Google Scholar 

  • Han WB, Li H, Zhou HY, Meng J, Gao JM, Tian JM, Zhang AL (2018) Chaetolactone, a skeletally new cyclopentenone from Chaetomium sp. C521. Nat Prod Commun 13:879–881

    Google Scholar 

  • Han XY, Xie YX, Wu CQ, Ai HL, Lei XX, Wang XJ (2019) Novel metabolites from the endophytic fungus Chaetomium subaffine L01. Chem Biodivers 16:e1900471

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chandra R, Arantes V, Gourlay K, van Dyk JS, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulose enzymes at high solid loadings. Bioresour Technol 186:149–153

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang K, Yu M, He P, Qiao H, Zhang H, Wang Z (2019) Characterization and antioxidant activity of a low-molecular-weight xanthan gum. Biomolecules 9:730

    Article  CAS  PubMed Central  Google Scholar 

  • Hua C, Li W, Han W, Wang Q, Bi P, Han C, Zhu L (2018) Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis. Int J Biol Macromol 117:342–349

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Liu X, Zhang M, Bie Q, Zeng F, Wang Y, Chen C, Zhu H, Zhang Y (2018) A new alkaloid from Chaetomium globosum. J Chin Pharm Sci 27:617–622

    Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Ibrahim SRM, Mohamed GA, Al Haidari RA, El-Kholy AA, Zayed MF, Khayat MT (2018) Biologically active fungal depsidones: chemistry, biosynthesis, structural characterization, and bioactivities. Fitoterapia 129:317–365

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Wang M, Li L, Si J, Song B, Zhou C, Yu M, Wang X, Zhang Y, Ding G, Zou Z (2016) Overexpression of the global regulator LaeA in Chaetomium globosum leads to the biosynthesis of chaetoglobosin Z. J Nat Prod 79:2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Chen S, Li J, Liu L (2020) The biological and chemical diversity of tetramic acid compounds from marine-derived microorganisms. Mar drugs 18:114

    Article  CAS  PubMed Central  Google Scholar 

  • Jin X, Ma H, Wang F, Jiang J, Cheng L, Hu S, Zhang, G (2020) Generation of indole derivatives by an endophytic fungus Chaetomium sp. through feeding 1,2-dimethylindole. Nat Prod Res 1-9. https://doi.org/10.1080/14786419.2020.1762189

  • Jo MJ, Patil MP, Jung HI, Seo YB, Lim HK, Son BW, Kim GD (2019) Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells. Drug Dev Res 80:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kamat S, Kumari M, Sajna KV, Jayabaskaran C (2020a) Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of chrysin. Sci Rep 10:18726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamat S, Kumari M, Taritla S, Jayabaskaran C (2020b) Endophytic fungi of marine alga from Konkan coast, India-A rich source of bioactive material. Front Mar Sci 7:31

    Article  Google Scholar 

  • Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Kim DC, Kwon J, Ryu SM, Kwon H, Guo Y, Hong SB, Kim YC, Oh H, Lee D (2020) Anti-inflammatory metabolites from Chaetomium nigricolor. J Nat Prod 83:881–887

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Paritosh K, Pareek N, Chawade A, Vivekanand V (2018) De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: an overview, Renew. Sustain. Energy Rev 90:160–170

    CAS  Google Scholar 

  • Kunze G, Schmidt JC (1817) Chaetomium. Myc Heft 1:15

    Google Scholar 

  • Lange L (2014) The importance of fungi and mycology for addressing major global challenges. IMA Fungus 5:463–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Liao ZB, Tang D, Han WB, Zhang Q, Gao JM (2018) Polyketides from two Chaetomium species and their biological functions. J Antibiot (Tokyo) 71:677–681

    Article  CAS  Google Scholar 

  • Liu L, Ding Y, Liu S, Wang S, Fang Y, Lyu M (2019) Dextrans removal from sugarcane juice using dextranase from marine bacterium Arthrobacter oxydans KQ11. Qual Assur Safe Crops Foods 11:53–59

    Article  CAS  Google Scholar 

  • Luo XW, Gao CH, Lu HM, Wang JM, Su ZQ, Tao HM, Zhou XF, Yang B, Liu YH (2020) HPLC-DAD-guided isolation of diversified chaetoglobosins from the coral-associated fungus Chaetomium globosum C2F17. Molecules 25:1237

    Article  CAS  PubMed Central  Google Scholar 

  • Mallouk S, Mohamed NSE, Debbab A (2020) Cytotoxic hydroperoxycochliodinol derivative from endophytic Chaetomium sp. isolated from Salvia officinalis. Chem Nat Compd 56:701–705

    Article  CAS  Google Scholar 

  • Manai I, Miladi B, El Mselmi A, Smaali I, Ben Hassen A, Hamdi M, Bouallagui H (2016) Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923. J Environ Manag 170:8–14

    Article  CAS  Google Scholar 

  • Mondol MAM, Farthouse J, Islam MT, Schüffler A, Laatsch H (2016) A new lactone from Chaetomium globosum strain M65 that inhibits the motility of zoospores. Nat Prod Commun 11:1865–1868

    PubMed  Google Scholar 

  • Moreno AD, Ibarra D, Eugenio ME, Tomás-Pejó E (2020) Laccases as versatile enzymes: from industrial uses to novel applications. J Chem Technol Biotechnol 95:481–494

    Article  CAS  Google Scholar 

  • Nielsen KF, Gravesen S, Nielsen PA, Andersen B, Thrane U, Frisvad JC (1999) Production of mycotoxins on artificially and naturally infested building materials. Mycopathologia 145:43–56

    Article  CAS  PubMed  Google Scholar 

  • Ningaraju S, Munawer U, Raghavendra VB, Balaji KS, Melappa G, Brindhadevi K, Pugazhendhi A (2021) Chaetomium globosum extract mediated gold nanoparticle synthesis and potent anti-inflammatory activity. Anal Biochem 612:113970

    Article  CAS  PubMed  Google Scholar 

  • Noumeur SR, Teponno RB, Helaly SE, Wang XW, Harzallah D, Houbraken J, Crous PW, Stadler M (2020) Diketopiperazines from Batnamyces globulariicola, gen. & sp. nov. (Chaetomiaceae), a fungus associated with roots of the medicinal plant Globularia alypum in Algeria. Mycol Prog 19:589–603

    Article  Google Scholar 

  • Ouyang J, Mao Z, Guo H, Xie Y, Cui Z, Sun J, Wu H, Wen X, Wang J, Shan T (2018) Mollicellins O-R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10. Molecules 23:3218

    Article  PubMed Central  CAS  Google Scholar 

  • Pavesi C, Flon V, Mann S, Leleu S, Prado S, Franck X (2021) Biosynthesis of azaphilones: a review. Nat Prod Rep. https://doi.org/10.1039/D0NP00080A

  • Peng F, Hou SY, Zhang TY, Wu YY, Zhang MY, Yan XM, Xia MY, Zhang YX (2019) Cytotoxic and antimicrobial indole alkaloids from an endophytic fungus Chaetomium sp. SYP-F7950 of Panax notoginseng. RSC Adv 9:28754–28763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng XG, Liu J, Gao Y, Cheng F, Chang JL, Chen J, Duan FF, Ruan HL (2020) Pchaeglobolactone A, Spiropchaeglobosin A, and Pchaeglobosals A and B: four rearranged cytochalasans from Chaetomium globosum P2-2-2. Org Lett 22:9665–9669

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Wang D, Yin X, Zhang Q, Gao JM (2020a) New metabolite with inhibitory activity against α-glucosidase and α-amylase from endophytic Chaetomium globosum. Nat Prod Commun 15:1–9

    Google Scholar 

  • Qi J, Jiang L, Zhao P, Chen H, Jia X, Zhao L, Dai H, Hu J, Liu C, Shim SH, Xia X, Zhang L (2020b) Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus. Appl Microbiol Biotechnol 104:1545–1553

    Article  CAS  PubMed  Google Scholar 

  • Ruan BH, Yu ZF, Yang XQ, Yang YB, Hu M, Zhang ZX, Zhou QY, Zhou H, Ding ZT (2018) New bioactive compounds from aquatic endophyte Chaetomium globosum. Nat Prod Res 32:1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:1000461

    Google Scholar 

  • Saranra JP, Stella D, Reetha D (2012) Microbial cellulases and its applications: a review. Int J Biochem Biotechnol Sci 1:1–12

    Google Scholar 

  • Sarmales-Murga C, Akaoka F, Sato M, Takanishi J, Mino T, Miyoshi N, Watanabe K (2020) A new class of dimeric product isolated from the fungus Chaetomium globosum: evaluation of chemical structure and biological activity. J Antibiot (Tokyo) 73:320–323

    Article  CAS  Google Scholar 

  • Saxena S, Chhibber M, Singh IP (2019) Fungal bioactive compounds in pharmaceutical research and development. Curr Bioact Compd 15:211

    Article  CAS  Google Scholar 

  • Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Singh S, Kanwar SS (2014) L-methionase: a therapeutic enzyme to treat malignancies. Biomed Res Int 2014:506287

    Article  PubMed  PubMed Central  Google Scholar 

  • Shylaja G, Sathiavelu A (2019) Evaluation of bioactive metabolites isolated from endophytic fungus Chaetomium cupreum of the plant Mussaenda luteola. Indian J Pharm Educ Res 53:S255–S263

    Article  CAS  Google Scholar 

  • Shylaja G, Sasikumar K, Sathiavelu A (2018) Antimycobacterial potential of resorcinol type lipid isolated from Chaetomium cupreum, an endophytic fungus from Mussaenda luteola. J Bangladesh Pharmacol 13:114–119

    Article  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass--an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  • Song C, Ding G, Wu G, Yang J, Zhang M, Wang H, Wei D, Qin J, Guo L (2020) Identification of a unique azaphilone produced by Chaetomium globosum isolated from Polygonatum sibiricum. Chem Biodivers 17:e1900744

    Article  CAS  PubMed  Google Scholar 

  • Suganya K, Govindan K, Prabha P, Murugan M (2017) An extensive review on L-methioninase and its potential applications. Biocatal Agric Biotechnol 12:104–115

    Article  Google Scholar 

  • Sun C, Ge X, Mudassir S, Zhou L, Yu G, Che Q, Zhang G, Peng J, Gu Q, Zhu T, Li D (2019) New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398. Mar Drugs 17:253

    Article  CAS  PubMed Central  Google Scholar 

  • Tantapakul C, Promgool T, Kanokmedhakul K, Soytong K, Song J, Hadsadee S, Jungsuttiwong S, Kanokmedhakul S (2020) Bioactive xanthoquinodins and epipolythiodioxopiperazines from Chaetomium globosum 7s-1, an endophytic fungus isolated from Rhapis cochinchinensis (Lour.) Mart. Nat Prod Res 34:494–502

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    Article  CAS  Google Scholar 

  • Von Arx JA, Guarro J, Figueras MJ (1986) The ascomycete genus Chaetomium. Beih Nova Hedwig 84:1–162

    Google Scholar 

  • Wang Y, Wang P, Ma H, Zhu W (2013) Developments around the bioactive diketopiperazines: a patent review. Expert Opin Ther Pat 23:1415–1433

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Lombard L, Groenewald JZ, Li J, Videira SI, Samson RA, Liu XZ, Crous PW (2016a) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36:83–133

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA (2016b) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol 84:145–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XY, Yan X, Fang MJ, Wu Z, Wang D, Qiu YK (2017a) Two new cytochalasan derivatives from Chaetomium globosum SNSHI-5, a fungus derived from extreme environment. Nat Prod Res 31:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Jiang J, Hu S, Ma H, Zhu H, Tong Q, Cheng L, Hao X, Zhang G, Zhang Y (2017b) Secondary metabolites from endophytic fungus Chaetomium sp. induce colon cancer cell apoptotic death. Fitoterapia 121:86–93

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, Gao M, Shao Z, Chen J, Li F (2018a) Chlorinated azaphilone pigments with antimicrobial and cytotoxic aactivities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar Drugs 16:61

    Article  PubMed Central  CAS  Google Scholar 

  • Wang W, Zeng F, Bie Q, Dai C, Chen C, Tong Q, Liu J, Wang J, Zhou Y, Zhu H, Zhang Y (2018b) Cytochathiazines A-C: three merocytochalasans with a 2 H-1,4-thiazine functionality from coculture of Chaetomium globosum and Aspergillus flavipes. Org Lett 20:6817–6821

    Article  CAS  PubMed  Google Scholar 

  • Wang MH, Hu YC, Sun BD, Yu M, Niu SB, Guo Z, Zhang XY, Zhang T, Ding G, Zou ZM (2018c) Highly photosensitive poly-sulfur-bridged chetomin analogues from Chaetomium cochliodes. Org Lett 20:1806–1809

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Gong J, Liu X, Dai C, Wang Y, Li XN, Wang J, Luo Z, Zhou Y, Xue Y, Zhu H, Chen C, Zhang Y (2018d) Cytochalasans produced by the coculture of Aspergillus flavipes and Chaetomium globosum. J Nat Prod 81:1578–1587

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Yang FY, Meijer M, Kraak B, Sun BD, Jiang YL, Wu YM, Bai FY, Seifert KA, Crous PW, Samson RA, Houbraken J (2019a) Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Stud Mycol 93:65–153

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhao W, Zhang C, Chang S, Shao R, Xing J, Chen M, Zhang Y, Si S (2019b) Cytotoxic metabolites from the endophytic fungus Chaetomium globosum 7951. RSC Adv 9:16035–16039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HH, Li G, Qiao YN, Sun Y, Peng XP, Lou HX (2019c) Chamiside A, a cytochalasan with a tricyclic core skeleton from the endophytic fungus Chaetomium nigricolor F5. Org Lett 21:3319–3322

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xue R, Cui J, Wang J, Fan W, Zhang H, Zhan X (2019d) Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int J Biol Macromol 125:376–382

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jia S, Cui J, Qu J, Yue Y, Sun Q, Zhang H (2019e) Antioxidant activity of a polysaccharide produced by Chaetomium globosum CGMCC 6882. Int J Biol Macromol 141:955–960

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhu J, Li W, Li R, Wang X, Qiao H, Sun Q, Zhang H (2020a) Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int J Biol Macromol 159:231–235

    Article  CAS  PubMed  Google Scholar 

  • Wang MH, Zhang XY, Tan XM, Niu SB, Sun BD, Yu M, Ding G, Zou ZM (2020b) Chetocochliodins A-I, epipoly(thiodioxopiperazines) from Chaetomium cochliodes. J Nat Prod 83:805–813

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, Qin JJ, Shao Z (2020c) Cytotoxic nitrogenated azaphilones from the deep-eea-derived fungus Chaetomium globosum MP4-S01-7. J Nat Prod 83:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao L, Liu C, Qi J, Zhao P, Liu Z, Li C, Hu Y, Yin X, Liu X, Liao Z, Zhang L, Xia X (2020d) New tetramic acids comprising of decalin and pyridones from Chaetomium olivaceum SD-80A with antimicrobial activity. Front Microbiol 10:2958

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YD, Li YY, Tan XM, Chen L, Wei ZQ, Shen L, Ding G (2020e) Revision of the structure of isochaetoglobosin Db based on NMR analysis and biosynthetic consideration. RSC Adv 10:23969–23974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu X, Bao Y, Wang X, Zhai J, Zhan X, Zhang H (2021) Characterization and anti-inflammation of a polysaccharide produced by Chaetomium globosum CGMCC 6882 on LPS-induced RAW 264.7 cells. Carbohydr Polym 251:117129

    Article  CAS  PubMed  Google Scholar 

  • Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16:1–12

    Article  CAS  Google Scholar 

  • Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat Prod Rep 31:1474–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu QL, Xiao YS, Shen Y, Wu HM, Zhang X, Deng XZ, Wang TT, Li W, Tan RX, Jiao RH, Ge HM (2018) Novel chaetospirolactone and orsellide F from an endophytic fungus Chaetomium sp. J Asian Nat Prod Res 20:234–241

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Vivekanand V (2019) Chaetomium globosporum: a novel laccase producing fungus for improving the hydrolyzability of lignocellulosic biomass. Heliyon 5:e01353

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan W, Cao LL, Zhang YY, Zhao R, Zhao SS, Khan B, Ye YH (2018) New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules 23:2873

    Article  PubMed Central  CAS  Google Scholar 

  • Yan W, Zhao SS, Ye YH, Zhang YY, Zhang Y, Xu JY, Yin SM, Tan RX (2019) Generation of indoles with agrochemical significance through biotransformation by Chaetomium globosum. J Nat Prod 82:2132–2137

    Article  CAS  PubMed  Google Scholar 

  • Yang MH, Gu ML, Han C, Guo XJ, Yin GP, Yu P, Kong LY (2018) Aureochaeglobosins A-C, three [4+2] adducts of chaetoglobosin and aureonitol derivatives from Chaetomium globosum. Org Lett 20:3345–3348

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhou N, Tian Y (2019a) Characterization and application of dextranase produced by Chaetomium globosum mutant through combined application of atmospheric and room temperature plasma and ethyl methyl sulfone. Process Biochem 85:116–124

    Article  CAS  Google Scholar 

  • Yang SX, Zhao WT, Chen HY, Zhang L, Liu TK, Chen HP, Yang J, Yang XL (2019b) Aureonitols A and B, two new C13-polyketides from Chaetomium globosum, an endophytic fungus in Salvia miltiorrhiza. Chem Biodivers 16:e1900364

    Article  PubMed  CAS  Google Scholar 

  • Yao C, Bai HH, Zhang Q, Qian XQ, Zhang X, Wu LW, Yang T, Li GY (2019) Secondary metabolites from the fungus Chaetomium elatum CIB-412. Chem Nat Compd 55:899–901

    Article  CAS  Google Scholar 

  • Yu FX, Chen Y, Yang YH, Zhao PJ (2016) Four new dimeric spiro-azaplilone derivatives cochliodones E-H from the entophytic fungus Chaetomium sp. M336. Phytochem Lett 16:263–267

    Article  CAS  Google Scholar 

  • Yu FX, Li Z, Chen Y, Yang YH, Li GH, Zhao PJ (2017) Four new steroids from the endophytic fungus Chaetomium sp. M453 derived of Chinese herbal medicine Huperzia serrata. Fitoterapia 117:41–46

    Article  CAS  PubMed  Google Scholar 

  • Yu FX, Chen Y, Yang YH, Li GH, Zhao PJ (2018) A new epipolythiodioxopiperazine with antibacterial and cytotoxic activities from the endophytic fungus Chaetomium sp. M336. Nat Prod Res 32:689–694

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Liu X, Guan L, Jiang Z, Yan Q, Yang S (2020) High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing. Int J Biol Macromol 168:223–232

    Article  PubMed  CAS  Google Scholar 

  • Yun K, Khong TT, Leutou AS, Kim GD, Hong J, Lee CH, Son BW (2016) Cristazine, a new cytotoxic dioxopiperazine alkaloid from the mudflat-sediment-derived fungus Chaetomium cristatum. Chem Pharm Bull (Tokyo) 64:59–62

    Article  Google Scholar 

  • Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL (2012) Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Rev Med Chem 12:127–148

    Article  PubMed  Google Scholar 

  • Zhang Z, Min X, Huang J, Zhong Y, Wu Y, Li X, Deng Y, Jiang Z, Shao Z, Zhang L, He F (2016) Cytoglobosins H and I, new antiproliferative cytochalasans from deep-sea-derived fungus Chaetomium globosum. Mar Drugs 14:233

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang XY, Tan XM, Yu M, Yang J, Sun BD, Qin JC, Guo LP, Ding G (2021) Bioactive metabolites from the desert plant-associated endophytic fungus Chaetomium globosum (Chaetomiaceae). Phytochemistry 185:112701

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Yang M, Zhu G, Zhao B, Wang H, Liu H, Wang X, Qi J, Yin X, Yu L, Meng Y, Li Z, Zhang L, Xia X (2021) Mollicellins S-U, three new depsidones from Chaetomium brasiliense SD-596 with anti-MRSA activities. J Antibiot (Tokyo) 74:317–323

    Article  CAS  Google Scholar 

  • Zu WY, Tang JW, Hu K, Zhou YF, Gou LL, Su XZ, Lei X, Sun HD, Puno PT (2020) Chaetolactam A, an azaphilone derivative from the endophytic fungus Chaetomium sp. g1. J Organomet Chem 86:475–483

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.R.M.I. and G.A.M.; resources, G.A.M. and S.G.A.M.; writing-original draft preparation, S.R.M.I., G.A.M., and S.G.A.M.; writing-review and editing, G.A.M. and S.R.M.I; resources, revision, and proof-reading, I.A.S.; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sabrin R. M. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Marc Stadler

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.R.M., Mohamed, S.G.A., Sindi, I.A. et al. Biologically active secondary metabolites and biotechnological applications of species of the family Chaetomiaceae (Sordariales): an updated review from 2016 to 2021. Mycol Progress 20, 595–639 (2021). https://doi.org/10.1007/s11557-021-01704-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-021-01704-w

Keywords

Navigation