Skip to main content

Advertisement

Log in

Recursive multiresolution convolutional neural networks for 3D aortic valve annulus planimetry

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Transcatheter aortic valve replacement (TAVR) is the standard of care in a large population of patients with severe symptomatic aortic valve stenosis. The sizing of TAVR devices is done from ECG-gated CT angiographic image volumes. The most crucial step of the analysis is the determination of the aortic valve annular plane. In this paper, we present a fully tridimensional recursive multiresolution convolutional neural network (CNN) to infer the location and orientation of the aortic valve annular plane.

Methods

We manually labeled 1007 ECG-gated CT volumes from 94 patients with severe degenerative aortic valve stenosis. The algorithm was implemented and trained using the TensorFlow framework (Google LLC, USA). We performed K-fold cross-validation with K = 9 groups such that CT volumes from a given patient are assigned to only one group.

Results

We achieved an average out-of-plane localization error of (0.7 ± 0.6) mm for the training dataset and of (0.9 ± 0.8) mm for the evaluation dataset, which is on par with other published methods and clinically insignificant. The angular orientation error was (3.9 ± 2.3)° for the training dataset and (6.4 ± 4.0)° for the evaluation dataset. For the evaluation dataset, 84.6% of evaluation image volumes had a better than 10° angular error, which is similar to expert-level accuracy. When measured in the inferred annular plane, the relative measurement error was (4.73 ± 5.32)% for the annular area and (2.46 ± 2.94)% for the annular perimeter.

Conclusions

The proposed algorithm is the first application of CNN to aortic valve planimetry and achieves an accuracy on par with proposed automated methods for localization and approaches an expert-level accuracy for orientation. The method relies on no heuristic specific to the aortic valve and may be generalizable to other anatomical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matiasz R, Rigolin VH (2018) 2017 Focused update for management of patients with valvular heart disease: summary of new recommendations. J Am Heart Assoc 7(1):e007596

    Article  Google Scholar 

  2. Blanke P, Weir-McCall J, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H, Marwan M, Norgaard BL, Piazza N, Schoenhagen P, Leipsic JA (2019) Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the society of cardiovascular computed tomography. J Cardiovasc Comput Tomogr 13(1):1–20. https://doi.org/10.1016/j.jcct.2018.11.008

    Article  PubMed  Google Scholar 

  3. Vaquerizo B, Spaziano M, Alali J, Mylote D, Theriault-Lauzier P, Alfagih R, Martucci G, Buithieu J, Piazza N (2015) Three-dimensional echocardiography vs. computed tomography for transcatheter aortic valve replacement sizing. Eur Heart J Cardiovasc Imag 17(1):15–23

    Google Scholar 

  4. Mylotte D, Dorfmeister M, Elhmidi Y, Mazzitelli D, Bleiziffer S, Wagner A, Noterdaeme T, Lange R, Piazza N (2014) Erroneous measurement of the aortic annular diameter using 2-dimensional echocardiography resulting in inappropriate corevalve size selection. JACC Cardiovasc Intervent 7(6):652–661

    Article  Google Scholar 

  5. Piazza N, de Jaegere P, Schultz C, Becker AE, Serruys PW, Anderson RH (2008) Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv 1(1):74–81

    Article  Google Scholar 

  6. Schuhbaeck A, Achenbach S, Pflederer T, Marwan M, Schmid J, Nef H, Rixe J, Hecker F, Schneider C, Lell M, Uder M, Arnold M (2014) Reproducibility of aortic annulus measurements by computed tomography. Eur Radiol 24(8):1878–1888. https://doi.org/10.1007/s00330-014-3199-5

    Article  PubMed  Google Scholar 

  7. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  8. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  9. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  10. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention—MICCAI 2015, pp 234–241

  11. Zhang W, Doi K, Giger ML, Wu Y, Nishikawa RM, Schmidt RA (1994) Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys 21(4):517–524. https://doi.org/10.1118/1.597177

    Article  CAS  PubMed  Google Scholar 

  12. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  13. Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), pp 565–571

  14. Hennemuth A, Boskamp T, Fritz D, Kühnel C, Bock S, Rinck D, Scheuering M, Peitgen H (2005) One-click coronary tree segmentation in CT angiographic images. Int Congr Ser 1281:317–321

    Article  Google Scholar 

  15. Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27(9):1189–1201

    Article  Google Scholar 

  16. Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Vega-Higuera F, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29(9):1636–1651

    Article  Google Scholar 

  17. Waechter I, Kneser R, Korosoglou G, Peters J, Bakker NH, van der Boomen R, Weese J (2010) Patient specific models for planning and guidance of minimally invasive aortic valve implantation. Med Image Comput Comput Assist Interv 13(Pt 1):526–533

    CAS  PubMed  Google Scholar 

  18. Zheng Y, John M, Liao R, Nottling A, Boese J, Kempfert J, Walther T, Brockmann G, Comaniciu D (2012) Automatic aorta segmentation and valve landmark detection in C-Arm CT for transcatheter aortic valve implantation. IEEE Trans Med Imaging 31(12):2307–2321

    Article  Google Scholar 

  19. Elattar MA, Wiegerinck EM, Planken RN, vanbavel E, van Assen HC, Baan J, Marquering HA (2014) Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation. Med Biol Eng Comput 52(7):611–618. https://doi.org/10.1007/s11517-014-1165-7

    Article  CAS  PubMed  Google Scholar 

  20. Elattar M, Wiegerinck E, van Kesteren F, Dubois L, Planken N, Vanbavel E, Baan J, Marquering H (2016) Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation. Int J Cardiovasc Imaging 32(3):501–511

    Article  Google Scholar 

  21. Jeganathan J, Knio Z, Amador Y, Hai T, Khamooshian A, Matyal R, Khabbaz KR, Mahmood F (2017) Artificial intelligence in mitral valve analysis. Ann Cardiac Anaesth 20(2):129–134

    Article  Google Scholar 

  22. Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, Sun W (2017) Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int J Numer Method Biomed Eng. https://doi.org/10.1002/cnm.2827

    Article  PubMed  Google Scholar 

  23. Al WA, Jung HY, Yun ID, Jang Y, Park H, Chang H (2018) Automatic aortic valve landmark localization in coronary CT angiography using colonial walk. PLoS ONE 13(7):e0200317. https://doi.org/10.1371/journal.pone.0200317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noothout JM, de Vos BD, Wolterink JM, Leiner T, Išgum I (2018) CNN-based landmark detection in cardiac CTA Scans. arXiv Preprint arXiv:1804.04963

  25. Zheng Y, Liu D, Georgescu B, Nguyen H, Comaniciu D (2015) 3D deep learning for efficient and robust landmark detection in volumetric data. In: International conference on medical image computing and computer-assisted intervention, 2015, pp 565–572

  26. Binder RK, Webb JG, Willson AB, Urena M, Hansson NC, Norgaard BL, Pibarot P, Barbanti M, Larose E, Freeman M, Dumont E, Thompson C, Wheeler M, Moss RR, Yang T, Pasian S, Hague CJ, Nguyen G, Raju R, Toggweiler S, Min JK, Wood DA, Rodés-Cabau J, Leipsic J (2013) The Impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J Am Coll Cardiol 62(5):431–438

    Article  Google Scholar 

  27. Spaziano M, Thériault-Lauzier P, Meti N, Vaquerizo B, Blanke P, Deli-Hussein J, Chetrit M, Galatas C, Buithieu J, Lange R, Martucci G, Leipsic J, Piazza N (2016) Optimal fluoroscopic viewing angles of left-sided heart structures in patients with aortic stenosis and mitral regurgitation based on multislice computed tomography. J Cardiovasc Comput Tomogr 10(2):162–172

    Article  Google Scholar 

  28. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imag 32(4):582–596. https://doi.org/10.1007/s10278-019-00227-x

    Article  Google Scholar 

  29. Astudillo P, Mortier P, Bosmans J, De Backer O, de Jaegere P, De Beule M, Dambre J (2019) Enabling automated device size selection for transcatheter aortic valve implantation. J Interv Cardiol 2019:3591314. https://doi.org/10.1155/2019/3591314

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Theriault-Lauzier.

Ethics declarations

Conflict of interest

Pascal Theriault-Lauzier is a consultant for Circle CVI and receives royalties from sales of their software. Nicolo Piazza is a consultant and proctor for Medtronic and receives royalties from sales of Circle CVI software. Giuseppe Martucci is a proctor for Medtronic. All other authors have no conflict of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Human and animal rights

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Theriault-Lauzier formally at the Division of Cardiology, McGill University, Montreal, QC, Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theriault-Lauzier, P., Alsosaimi, H., Mousavi, N. et al. Recursive multiresolution convolutional neural networks for 3D aortic valve annulus planimetry. Int J CARS 15, 577–588 (2020). https://doi.org/10.1007/s11548-020-02131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-020-02131-0

Keywords

Navigation