Skip to main content

Advertisement

Log in

Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses

  • ONCOLOGY IMAGING
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

The past decade has witnessed a growing role and increasing use of whole-body magnetic resonance imaging (WB-MRI). Driving these successes are developments in both hardware and software that have reduced overall examination times and significantly improved MR imaging quality. In addition, radiologists and clinicians have continued to find promising new applications of this innovative imaging technique that brings together morphologic and functional characterization of tissues. In oncology, the role of WB-MRI has expanded to the point of being recommended in international guidelines for the assessment of several cancer histotypes (multiple myeloma, melanoma, prostate cancer) and cancer-prone syndromes (Li–Fraumeni and hereditary paraganglioma–pheochromocytoma syndromes). The literature shows growing use of WB-MRI for the staging and follow-up of other cancer histotypes and cancer-related syndromes (including breast cancer, lymphoma, neurofibromatosis, and von Hippel–Lindau syndromes). The main aim of this review is to examine the current scientific evidence for the use of WB-MRI in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560. https://doi.org/10.1002/andp.19053220806

    Article  Google Scholar 

  2. Le Bihan D, Breton E (1985) Imagerie de diffusion in vivo par résonance magnétique nucléaire. C R Acad Sci 93:27–34

    Google Scholar 

  3. Warach S, Dashe JF, Edelman RR (1996) Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab 16:53–59. https://doi.org/10.1097/00004647-199601000-00006

    Article  CAS  PubMed  Google Scholar 

  4. Koh D-M, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 188:1622–1635. https://doi.org/10.2214/ajr.06.1403

    Article  Google Scholar 

  5. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17:1385–1393. https://doi.org/10.1007/s00330-006-0547-0

    Article  PubMed  Google Scholar 

  6. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  7. Liu T, Wang S, Liu H et al (2016) Detection of vertebral metastases: a meta-analysis comparing MRI, CT, PET, BS and BS with SPECT. J Cancer Res Clin Oncol 143:457–465. https://doi.org/10.1007/s00432-016-2288-z

    Article  PubMed  Google Scholar 

  8. Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: A meta-analysis. Eur J Radiol 83:338–344. https://doi.org/10.1016/j.ejrad.2013.11.017

    Article  PubMed  Google Scholar 

  9. Pflugfelder A, Kochs C, Blum A et al (2013) Malignant melanoma S3-guideline “diagnosis, therapy and follow-up of melanoma”. J Dtsch Dermatol Ges. 11:1–116. https://doi.org/10.1111/ddg.12113_suppl

    Article  PubMed  Google Scholar 

  10. Chantry A, Kazmi M, Barrington S et al (2017) Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol 178:380–393. https://doi.org/10.1111/bjh.14827

    Article  PubMed  Google Scholar 

  11. Mottet N, Bellmunt J, Bolla M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71:618–629. https://doi.org/10.1016/j.eururo.2016.08.003

    Article  PubMed  Google Scholar 

  12. Kosmin M, Makris A, Joshi PV et al (2017) The addition of whole-body magnetic resonance imaging to body computerised tomography alters treatment decisions in patients with metastatic breast cancer. Eur J Cancer 77:109–116. https://doi.org/10.1016/j.ejca.2017.03.001

    Article  PubMed  Google Scholar 

  13. Mayerhoefer ME, Karanikas G, Kletter K et al (2014) Evaluation of diffusion-weighted MRI for pretherapeutic assessment and staging of lymphoma: results of a prospective study in 140 patients. Clin Cancer Res 20:2984–2993. https://doi.org/10.1158/1078-0432.CCR-13-3355

    Article  PubMed  Google Scholar 

  14. Padhani AR, Liu G, Mu-Koh D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125. https://doi.org/10.1593/neo.81328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Padhani AR, Lecouvet FE, Tunariu N et al (2017) Metastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 71:81–92. https://doi.org/10.1016/J.EURURO.2016.05.033

    Article  PubMed  PubMed Central  Google Scholar 

  16. Squillaci E, Bolacchi F, Altobelli S et al (2015) Pre-treatment staging of multiple myeloma patients: comparison of whole-body diffusion weighted imaging with whole-body T1-weighted contrast-enhanced imaging. Acta Radiol 56:733–738. https://doi.org/10.1177/0284185114538792

    Article  PubMed  Google Scholar 

  17. Latifoltojar A, Hall-Craggs M, Bainbridge A et al (2017) Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol 27:5325–5336. https://doi.org/10.1007/s00330-017-4907-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jouvet JC, Thomas L, Thomson V et al (2014) Whole-body MRI with diffusion-weighted sequences compared with 18 FDG PET-CT, CT and superficial lymph node ultrasonography in the staging of advanced cutaneous melanoma: a prospective study. J Eur Acad Dermatol Venereol 28:176–185. https://doi.org/10.1111/jdv.12078

    Article  CAS  PubMed  Google Scholar 

  19. Mosavi F, Ullenhag G, Ahlström H (2013) Whole-body MRI including diffusion-weighted imaging compared to CT for staging of malignant melanoma. Ups J Med Sci 118:91–97. https://doi.org/10.3109/03009734.2013.778375

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ballinger ML, Best A, Mai PL et al (2017) Baseline surveillance in Li–Fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol 3:1634–1639. https://doi.org/10.1001/jamaoncol.2017.1968

    Article  PubMed  Google Scholar 

  21. Dutoit JC, Vanderkerken MA, Verstraete KL (2013) Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma. Eur J Radiol 82:1444–1452. https://doi.org/10.1016/j.ejrad.2013.04.012

    Article  PubMed  Google Scholar 

  22. Lin C, Luciani A, Belhadj K et al (2009) Patients with plasma cell disorders examined at whole-body dynamic contrast-enhanced MR imaging: initial experience. Radiology 250:905–915. https://doi.org/10.1148/radiol.2503081017

    Article  PubMed  Google Scholar 

  23. Lin C, Luciani A, Belhadj K et al (2010) Multiple myeloma treatment response assessment with whole-body dynamic contrast-enhanced MR imaging. Radiology 254:521–531. https://doi.org/10.1148/radiol.09090629

    Article  PubMed  Google Scholar 

  24. Hillengass J, Fechtner K, Weber M-A et al (2010) Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 28:1606–1610. https://doi.org/10.1200/JCO.2009.25.5356

    Article  PubMed  Google Scholar 

  25. Lauenstein TC, Freudenberg LS, Goehde SC et al (2002) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099. https://doi.org/10.1007/s00330-002-1344-z

    Article  PubMed  Google Scholar 

  26. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6:147–155. https://doi.org/10.2463/mrms.6.147

    Article  PubMed  Google Scholar 

  27. Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in non-small cell lung cancer patients: Comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:298–308. https://doi.org/10.1002/jmri.21858

    Article  PubMed  Google Scholar 

  28. Jambor I, Kuisma A, Ramadan S et al (2016) Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5 T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol (Madr) 55:59–67. https://doi.org/10.3109/0284186X.2015.1027411

    Article  Google Scholar 

  29. Adams HJA, Kwee TC, Vermoolen MA et al (2013) Whole-body MRI for the detection of bone marrow involvement in lymphoma: prospective study in 116 patients and comparison with FDG-PET. Eur Radiol 23:2271–2278. https://doi.org/10.1007/s00330-013-2835-9

    Article  PubMed  Google Scholar 

  30. Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279:345–365. https://doi.org/10.1148/radiol.2016142084

    Article  PubMed  Google Scholar 

  31. Petralia G, Padhani A, Summers P et al (2013) Whole-body diffusion-weighted imaging: is it all we need for detecting metastases in melanoma patients? Eur Radiol 23:3466–3476. https://doi.org/10.1007/s00330-013-2968-x

    Article  PubMed  Google Scholar 

  32. Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753

    Article  PubMed  Google Scholar 

  33. Hillengass J, Bäuerle T, Bartl R et al (2011) Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 153:721–728. https://doi.org/10.1111/j.1365-2141.2011.08658.x

    Article  PubMed  Google Scholar 

  34. Kosmin M, Makris A, Joshi PV et al (2017) The addition of whole-body magnetic resonance imaging to body computerised tomography alters treatment decisions in patients with metastatic breast cancer ScienceDirect. Eur J Cancer 77:109–116. https://doi.org/10.1016/j.ejca.2017.03.001

    Article  PubMed  Google Scholar 

  35. Zugni F, Ruju F, Pricolo P et al (2018) The added value of whole-body magnetic resonance imaging in the management of patients with advanced breast cancer. PLoS One. https://doi.org/10.1371/journal.pone.0205251

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jacobs MA, Macura KJ, Zaheer A et al (2018) Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol. https://doi.org/10.1016/j.acra.2018.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang D, Huo Y, Chen S et al (2018) Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis. Onco Targets Ther 11:3597–3608. https://doi.org/10.2147/OTT.S148189

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dimopoulos MA, Hillengass J, Usmani S et al (2015) Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 33:657–664. https://doi.org/10.1200/JCO.2014.57.9961

    Article  PubMed  Google Scholar 

  39. Walker R, Barlogie B, Haessler J et al (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 25:1121–1128. https://doi.org/10.1200/JCO.2006.08.5803

    Article  PubMed  Google Scholar 

  40. Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. Am J Roentgenol 190:1097–1104. https://doi.org/10.2214/AJR.07.2635

    Article  Google Scholar 

  41. Oxford Centre for Evidence-based Medicine (2009) Levels of evidence (March 2009). https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 7 July 2018

  42. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller-Horvat C, Radny P, Eigentler TK et al (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42:342–350. https://doi.org/10.1016/j.ejca.2005.10.008

    Article  PubMed  Google Scholar 

  44. Dummer R, Siano M, Hunger RE et al (2016) The updated Swiss guidelines 2016 for the treatment and follow-up of cutaneous melanoma. Swiss Med Wkly. https://doi.org/10.4414/smw.2016.14279

    Article  PubMed  Google Scholar 

  45. International Agency for Research on Cancer (2018) IARC research topics on prostate cancer. https://www.iarc.fr/en/cancertopics/prostatetopics.php. Accessed 7 July 2018

  46. Chang AJ, Autio KA, Roach M et al (2014) High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol 11:308–323. https://doi.org/10.1038/nrclinonc.2014.68

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skelet Radiol 43:1503–1513. https://doi.org/10.1007/s00256-014-1903-9

    Article  Google Scholar 

  48. Meller B, Bremmer F, Sahlmann CO et al (2015) Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. https://doi.org/10.1186/s13550-015-0145-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Padhani AR, Lecouvet FE, Tunariu N et al (2017) Rationale for modernising imaging in advanced prostate cancer. Eur Urol Focus 3:223–239. https://doi.org/10.1016/j.euf.2016.06.018

    Article  PubMed  Google Scholar 

  50. Lecouvet FE, Talbot JN, Messiou C et al (2014) Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer 50:2519–2531. https://doi.org/10.1016/j.ejca.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  51. Gillessen S, Attard G, Beer TM et al (2018) Management of patients with advanced prostate cancer: the report of the advanced prostate cancer consensus conference APCCC 2017. Eur Urol 73:178–211

    Article  PubMed  Google Scholar 

  52. Barrington SF, Mikhaeel NG, Kostakoglu L et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol 32:3048–3058. https://doi.org/10.1200/jco.2013.53.5229

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoppe RT, Advani RH, Ai WZ et al (2012) Hodgkin Lymphoma, Version 2.2012 featured updates to the NCCN guidelines. J Natl Compr Cancer Netw 10:589–597. https://doi.org/10.6004/jnccn.2012.0061

    Article  Google Scholar 

  54. Ahmad Sarji S (2006) Physiological uptake in FDG PET simulating disease. Biomed Imaging Interv J 2:e59. https://doi.org/10.2349/biij.2.4.e59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mayerhoefer ME, Karanikas G, Kletter K et al (2015) Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 21:2506–2513. https://doi.org/10.1158/1078-0432.ccr-14-2454

    Article  CAS  PubMed  Google Scholar 

  56. Brenner H, Gondos A, Pulte D (2009) Survival expectations of patients diagnosed with Hodgkin’s lymphoma in 2006–2010. Oncologist 14:806–813. https://doi.org/10.1634/theoncologist.2008-0285

    Article  PubMed  Google Scholar 

  57. National Comprehesive Cancer Network (2018) NCCN clinical practice guidelines in oncology (NCCN Guidelines®) Hodgkin Lymphoma Ver. 3. https://www.nccn.org/professionals/physician_gls/default.aspx#hodgkin. Accessed 7 July 2018

  58. Albano D, Patti C, Lagalla R et al (2016) Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma. J Magn Reson Imaging 45:1082–1089. https://doi.org/10.1002/jmri.25439

    Article  PubMed  Google Scholar 

  59. Albano D, Patti C, La Grutta L et al (2016) Comparison between whole-body MRI with diffusion-weighted imaging and PET/CT in staging newly diagnosed FDG-avid lymphomas. Eur J Radiol 85:313–318. https://doi.org/10.1016/j.ejrad.2015.12.006

    Article  PubMed  Google Scholar 

  60. Abdulqadhr G, Molin D, Åström G et al (2011) Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol 52:173–180. https://doi.org/10.1258/ar.2010.100246

    Article  PubMed  Google Scholar 

  61. Stéphane V, Samuel B, Vincent D et al (2013) Comparison of PET-CT and magnetic resonance diffusion weighted imaging with body suppression (DWIBS) for initial staging of malignant lymphomas. Eur J Radiol 82:2011–2017. https://doi.org/10.1016/j.ejrad.2013.05.042

    Article  PubMed  Google Scholar 

  62. Quarles Van Ufford HME, Kwee TC, Beek FJ et al (2011) Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. Am J Roentgenol 196:662–669. https://doi.org/10.2214/AJR.10.4743

    Article  Google Scholar 

  63. Gu J, Chan T, Zhang J et al (2011) Whole-body diffusion-weighted imaging: the added value to whole-body MRI at initial diagnosis of lymphoma. Am J Roentgenol 197:W384–W391. https://doi.org/10.2214/ajr.10.5692

    Article  Google Scholar 

  64. Lin C, Itti E, Luciani A et al (2011) Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Invest Radiol 46:341–349. https://doi.org/10.1097/rli.0b013e3182087b03

    Article  PubMed  Google Scholar 

  65. Wu X, Kellokumpu-Lehtinen P, Pertovaara H et al (2011) Diffusion-weighted MRI in early chemotherapy response evaluation of patients with diffuse large B-cell lymphoma—a pilot study: comparison with 2-deoxy-2-fluoro-d-glucose-positron emission tomography/computed tomography. NMR Biomed 24:1181–1190. https://doi.org/10.1002/nbm.1689

    Article  CAS  PubMed  Google Scholar 

  66. Veronesi U, Cascinelli N, Mariani L et al (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232. https://doi.org/10.1056/nejmoa020989

    Article  PubMed  Google Scholar 

  67. American Cancer Society (2018) Breast cancer survival rate & statistics. https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html. Accessed 7 July 2018

  68. Kwast ABG, Groothuis-Oudshoorn KCGM, Grandjean I et al (2012) Histological type is not an independent prognostic factor for the risk pattern of breast cancer recurrences. Breast Cancer Res Treat 135:271–280. https://doi.org/10.1007/s10549-012-2160-z

    Article  PubMed  Google Scholar 

  69. Costelloe CM, Chuang HH, Madewell JE, Ueno NT (2010) Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer. https://doi.org/10.7150/jca.1.80

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang H-L, Liu T, Wang X-M et al (2011) Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21:2604–2617. https://doi.org/10.1007/s00330-011-2221-4

    Article  PubMed  Google Scholar 

  71. Zugni F, Ruju F, Pricolo P, Alessi S, Iorfida M, Colleoni MA, Bellomi M, Petralia G (2018) The added value of whole-body magnetic resonance imaging in the management of patients with advanced breast cancer. PLoS ONE 13:e0205251. https://doi.org/10.1371/journal.pone.0205251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peccatori FA, Codacci-Pisanelli G, Del Grande M et al (2017) Whole body MRI for systemic staging of breast cancer in pregnant women. The Breast 35:177–181. https://doi.org/10.1016/j.breast.2017.07.014

    Article  PubMed  Google Scholar 

  73. Goldstein NS (2002) Does the level of E-cadherin expression correlate with the primary breast carcinoma infiltration pattern and type of systemic metastases? Am J Clin Pathol 118:425–434. https://doi.org/10.1309/jmrd-w08y-6k8m-7ad8

    Article  CAS  PubMed  Google Scholar 

  74. Usuda K, Sagawa M, Sumiko M et al (2016) Diagnostic performance of whole-body diffusion-weighted imaging compared to PET-CT plus brain MRI in staging clinically resectable lung cancer. Asian Pac J Cancer Prev 17:2775–2780

    PubMed  Google Scholar 

  75. Ohno Y, Yoshikawa T, Kishida Y et al (2017) Diagnostic performance of different imaging modalities in the assessment of distant metastasis and local recurrence of tumor in patients with non-small cell lung cancer. J Magn Reson Imaging 46:1707–1717. https://doi.org/10.1002/jmri.25726

    Article  PubMed  Google Scholar 

  76. Michielsen K, Dresen R, Vanslembrouck R et al (2017) Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative assessment of patients suspected for ovarian cancer. Eur J Cancer 83:88–98. https://doi.org/10.1016/j.ejca.2017.06.010

    Article  PubMed  Google Scholar 

  77. Gorelik N, Reddy SMV, Turcotte RE et al (2017) Early detection of metastases using whole-body MRI for initial staging and routine follow-up of myxoid liposarcoma. Skelet Radiol 47:369–379. https://doi.org/10.1007/s00256-017-2845-9

    Article  Google Scholar 

  78. Li FP (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. Ann Intern Med 71:747–752. https://doi.org/10.7326/0003-4819-71-4-747

    Article  CAS  PubMed  Google Scholar 

  79. Mai PL, Best AF, Peters JA et al (2016) Risks of first and subsequent cancers amongTP53mutation carriers in the National Cancer Institute Li–Fraumeni syndrome cohort. Cancer 122:3673–3681. https://doi.org/10.1002/cncr.30248

    Article  CAS  PubMed  Google Scholar 

  80. Bojadzieva J, Amini B, Day SF et al (2017) Whole body magnetic resonance imaging (WB-MRI) and brain MRI baseline surveillance in TP53 germline mutation carriers: experience from the Li–Fraumeni Syndrome Education and Early Detection (LEAD) clinic. Fam Cancer 17:287–294. https://doi.org/10.1007/s10689-017-0034-6

    Article  Google Scholar 

  81. Saya S, Killick E, Thomas S et al (2017) Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in TP53 mutation carriers and matched controls. Fam Cancer 16:433–440. https://doi.org/10.1007/s10689-017-9965-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mai PL, Khincha PP, Loud JT et al (2017) Prevalence of cancer at baseline screening in the National Cancer Institute Li–Fraumeni syndrome cohort. JAMA Oncol 3:1640–1645. https://doi.org/10.1001/jamaoncol.2017.1350

    Article  PubMed  PubMed Central  Google Scholar 

  83. Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li–Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305. https://doi.org/10.1016/s1470-2045(16)30249-2

    Article  CAS  PubMed  Google Scholar 

  84. Anupindi SA, Bedoya MA, Lindell RB et al (2015) Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. Am J Roentgenol 205:400–408. https://doi.org/10.2214/ajr.14.13663

    Article  Google Scholar 

  85. National Comprehesive Cancer Network (2018) NCCN clinical practice guidelines in oncology (NCCN Guidelines®) for genetic/familial high-risk assessment: breast and ovarian. Version 1

  86. Kratz CP, Achatz MI, Brugières L et al (2017) Cancer screening recommendations for individuals with Li–Fraumeni syndrome. Clin Cancer Res 23:e38–e45. https://doi.org/10.1158/1078-0432.ccr-17-0408

    Article  CAS  PubMed  Google Scholar 

  87. Else T, Greenberg S, Fishbein L (2018) Hereditary paraganglioma–pheochromocytoma syndromes. https://www.ncbi.nlm.nih.gov/books/NBK1548/. Accessed 5 Oct 2018

  88. Rednam SP, Erez A, Druker H et al (2017) Von Hippel–Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75. https://doi.org/10.1158/1078-0432.ccr-17-0547

    Article  CAS  PubMed  Google Scholar 

  89. Widemann BC, Blakeley JO, Dombi E et al (2013) Conclusions and future directions for the REiNS International Collaboration. Neurology 81:S41–S44. https://doi.org/10.1212/01.wnl.0000435748.79908.c5

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim JJ, Rini BI, Hansel DE (2010) Von Hippel Lindau syndrome. Adv Exp Med Biol. https://doi.org/10.1007/978-1-4419-6448-9_22

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hegenscheid K, Seipel R, Schmidt CO et al (2013) Potentially relevant incidental findings on research whole-body MRI in the general adult population: frequencies and management. Eur Radiol 23:816–826. https://doi.org/10.1007/s00330-012-2636-6

    Article  PubMed  Google Scholar 

  92. Goehde SC, Hunold P, Vogt FM et al (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. Am J Roentgenol 184:598–611. https://doi.org/10.2214/ajr.184.2.01840598

    Article  Google Scholar 

  93. Ulus S, Suleyman E, Aksoy Ozcan U, Karaarslan E (2016) Whole-body MRI screening in asymptomatic subjects; preliminary experience and long-term follow-up findings. Polish J Radiol 81:407–414. https://doi.org/10.12659/pjr.897570

    Article  Google Scholar 

  94. Tarnoki DL, Tarnoki AD, Richter A et al (2015) Clinical value of whole-body magnetic resonance imaging in health screening of general adult population. Radiol Oncol 49:10–16. https://doi.org/10.2478/raon-2014-0031

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lo GG, Ai V, Au-Yeung KM et al (2008) Magnetic resonance whole body imaging at 3 Tesla: feasibility and findings in a cohort of asymptomatic medical doctors. Hong Kong Med J Xianggang yi xue za zhi 14:90–96

    PubMed  Google Scholar 

  96. Cieszanowski A, Maj E, Kulisiewicz P et al (2014) Non-contrast-enhanced whole-body magnetic resonance imaging in the general population: the incidence of abnormal findings in patients 50 years old and younger compared to older subjects. PLoS ONE 9:e107840. https://doi.org/10.1371/journal.pone.0107840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bamberg F, Kauczor H-U, Weckbach S et al (2015) Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277:206–220. https://doi.org/10.1148/radiol.2015142272

    Article  PubMed  Google Scholar 

  98. UK Biobank (2018) UK Biobank—UK Biobank MRI Imaging Study. http://www.ukbiobank.ac.uk/scanning-study-launches/. Accessed 7 July 2018

  99. Ollivier L (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6:194–198. https://doi.org/10.1102/1470-7330.2006.0034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Padhani AR (2014) Whole-body MRI and diffusion MRI. Cancer Imaging 14:O31. https://doi.org/10.1186/1470-7330-14-S1-O31

    Article  PubMed Central  Google Scholar 

  101. Koh D-M, Blackledge M, Padhani AR et al (2012) Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. Am J Roentgenol 199:252–262. https://doi.org/10.2214/AJR.11.7866

    Article  Google Scholar 

  102. Padhani AR, Makris A, Gall P et al (2014) Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 39:1049–1078. https://doi.org/10.1002/jmri.24548

    Article  PubMed  Google Scholar 

  103. Padhani AR, Gogbashian A (2011) Bony metastases: assessing response to therapy with whole-body diffusion MRI. Cancer Imaging 11:S1–S17. https://doi.org/10.1102/1470-7330.2011.9034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Paul E. Summers.

Ethics declarations

Conflict of interest

Summers is part owner of Company QMRI Tech, which offers consulting services in MRI. Author Summers receives consulting fees from Company ASC, Italia. All other authors declare to have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petralia, G., Padhani, A.R., Pricolo, P. et al. Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol med 124, 218–233 (2019). https://doi.org/10.1007/s11547-018-0955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-018-0955-7

Keywords

Navigation