Skip to main content
Log in

Bayesian-Weighted Triplet and Quartet Methods for Species Tree Inference

  • Methods
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Inference of the evolutionary histories of species, commonly represented by a species tree, is complicated by the divergent evolutionary history of different parts of the genome. Different loci on the genome can have different histories from the underlying species tree (and each other) due to processes such as incomplete lineage sorting (ILS), gene duplication and loss, and horizontal gene transfer. The multispecies coalescent is a commonly used model for performing inference on species and gene trees in the presence of ILS. This paper introduces Lily-T and Lily-Q, two new methods for species tree inference under the multispecies coalescent. We then compare them to two frequently used methods, SVDQuartets and ASTRAL, using simulated and empirical data. Both methods generally showed improvement over SVDQuartets, and Lily-Q was superior to Lily-T for most simulation settings. The comparison to ASTRAL was more mixed—Lily-Q tended to be better than ASTRAL when the length of recombination-free loci was short, when the coalescent population parameter \(\theta \) was small, or when the internal branch lengths were longer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Avni E, Cohen R, Snir S (2015) Weighted Quartets Phylogenetics. Systematic Biology 64(2):233–242

    Article  Google Scholar 

  • Chifman J, Kubatko L (2014) Quartet Inference from SNP Data Under the Coalescent Model. Bioinformatics 30(23):3317–3324

    Article  Google Scholar 

  • Chifman J, Kubatko L (2015) Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology 374(1):35–47

    Article  MathSciNet  MATH  Google Scholar 

  • Chou J, Gupta A, Yaduvanshi S, Davidson R, Nute M, Mirarab S, Warnow T (2015) A comparative study of SVD quartets and other coalescent-based species tree estimation methods. BMC Genomics 16(S2). https://doi.org/10.1186/1471-2164-16-S10-S2

  • DeGiorgio M, Degnan JH (2010) Fast and consistent estimation of species trees using supermatrix rooted triples. Mol Biol Evol 27(3):552–569

    Article  Google Scholar 

  • Degnan JH, Salter LA (2005) Gene tree distributions under the coalescent process. Evolution 59(1):24–37

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(214):1. https://doi.org/10.1186/1471-2148-7-214

    Article  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Gatesy J, Meredith RW, Janecka JE, Simmons MP, Murphy WJ, Springer MS (2017) Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family-level tree for Mammalia. Cladistics 33:295–332

    Article  Google Scholar 

  • Gatesy J, Springer MS (2014) Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenetics Evol 80:231–266

    Article  Google Scholar 

  • Harding EF (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl Probab 3(1):44–77

    Article  MathSciNet  MATH  Google Scholar 

  • Hobolth A, Dutheil JY, Hawks J, Schierup MH, Mailund T (2011) Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res 21:349–356

    Article  Google Scholar 

  • Hudson RR (2003) Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18(2):337–338

    Article  Google Scholar 

  • Jennings WB, Edwards SV (2005) Speciational history of Australian grass finches (Pephila) inferred from thirty gene trees. Evolution 59(9):2033–2047

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York

    Book  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Process Appl 13(3):235–248

    Article  MathSciNet  MATH  Google Scholar 

  • Kopp A, Barmina O (2005) Evolutionary history of the drosophila bipectinata species complex. Genetical Res 85(1):23–46

    Article  Google Scholar 

  • Kubatko LS, Carstens BC, Knowles LL (2009) STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25(7):971–973

    Article  Google Scholar 

  • Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56(1):14–24

    Article  Google Scholar 

  • Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56(3):504–514

    Article  Google Scholar 

  • Liu L, Yu L, Edwards SV (2010) A maximum qseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol Biol. https://doi.org/10.1186/1471-2148-10-302

    Article  Google Scholar 

  • Mahim M, Zahin W, Rezwana R, Bayzid MS (2020) wQFM: statistically consistent genome-scale species tree estimation from weighted quartets. bioRxiv. https://www.biorxiv.org/content/early/2020/12/01/2020.11.30.403352

  • Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17):i541–i548

    Article  Google Scholar 

  • Mirarab S, Warnow T (2015) ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31(12):i44–i52

    Article  Google Scholar 

  • Oglivie HA, Bouckaert RR, Drummond AJ (2017) StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol Biol Evol 34(8):2101–2114

    Article  Google Scholar 

  • Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  Google Scholar 

  • Peng J, Swofford D, Kubatko L (2021) Estimation of speciation times under the multispecies coalescent (in review)

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum-evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  Google Scholar 

  • Rambaut A, Grassly NC (1997) Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci 13(3):235–238

    Google Scholar 

  • Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4):1645–1656

    Article  Google Scholar 

  • Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53(1):131–147

    Article  MathSciNet  MATH  Google Scholar 

  • Roch S, Steel M (2015) Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor Popul Biol 100c:56–62

    Article  MATH  Google Scholar 

  • Rokas A, Williams BL, Carroll S (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  Google Scholar 

  • Rosenberg NA (2007) Counting coalescent histories. J Comput Biol 14(3):360–377

    Article  MathSciNet  Google Scholar 

  • Salter L (2001) Complexity of the likelihood surface for a large DNA data set. Syst Biol 50(6):970–978

    Article  Google Scholar 

  • Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27(4):592–593

    Article  MathSciNet  Google Scholar 

  • Sevillya G, Frenkel Z, Snir S (2016) TripletMaxCut: a new toolkit for rooted supertree. Methods Ecol Evol 7(11):1359–1365

    Article  Google Scholar 

  • Springer MS, Gatesy J (2016) Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenetics Evol 94:1–33

    Article  Google Scholar 

  • Stadler T, Steel M (2011) Distribution of branch lengths and pylogenetic diversity under homogeneous speciation models. J Theor Biol 297:33–40

    Article  MATH  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313, 01

  • Steel M, Penny D (1993) Distribution of tree comparison metrics—some new results. Syst Biol 42(2):136–141

    Google Scholar 

  • Swofford DL (2003) Paup*. phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates. Sunderland, Massachusetts

  • Thawornwattana Y, Dalquen D, Yang Z (2018) Coalescent analysis of phylogenomic data confidently resolves the species relationships in the anopheles gambiae species complex. Mol Biol Evol 35(10):2512–2527

    Article  Google Scholar 

  • Wakeley J (2009) Coalescent Theory: An Introduction. Roberts & Company Publishers, Greenwood Village

  • Wascher M, Kubatko L (2021) Consistency of SVDQuartets and maximum likelihood for coalescent-based species tree estimation. Syst Biol 70(1):33–48

    Article  Google Scholar 

  • Wen D, Nakhleh L (2018) Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Syst Biol 67(1):439–457

    Article  Google Scholar 

  • Whidden C, Matsen IV FA (2015) Quantifying MCMC exploration of phylogenetic tree space. Syst Biol 64(3):472–491

  • Yang Z (2014) Molecular evolution: a statistical approach. Oxford University Press, New York

    Book  MATH  Google Scholar 

  • Yang Z (2015) The BPP program for species tree estimation and species delimitation. Curr Zool 61(5):854–865

    Article  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol Biol Evol 14:717–724

    Article  Google Scholar 

  • Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19(Supp 6):15–30

    Google Scholar 

Download references

Acknowledgements

The authors thank the Associate Editor and three anonymous reviewers for helpful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Kubatko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6442 KB)

Appendix

Appendix

1.1 Calculation of \(\varvec{\delta }|S\) for 4-Taxon Trees

From Chifman and Kubatko (2015), as in the 3-taxon case \(P(\varvec{\delta }|(S,\varvec{\tau }))\) is the inner product \(\mathbf{c }^{T}\mathbf{b }\) where \(\mathbf{c }\) is a vector of constants times a function of \(\varvec{\tau }\) that is of the form \(e^{-a\tau _1-b\tau _2-g\tau _3}\).

1.1.1 Asymmetric Case

From (Chifman and Kubatko 2015) we have the following, converting to coalescent units from mutation units and using 4 characters \(\{A,C,G,T\}\):

$$\begin{aligned} \delta _k|(s,\varvec{\tau })= & {} 1/256(c_0+c_1\frac{e^{-\alpha \theta \tau _1}}{(1+\alpha \theta )} +c_2\frac{e^{-\alpha \theta \tau _2}}{(1+\alpha \theta )} +c_3\frac{e^{-\alpha \theta (\tau _1/2+\tau _2)}}{(1+\alpha \theta )(1+2\alpha \theta )}\\&+c_4\frac{e^{-\alpha \theta \tau _3}}{(1+\alpha \theta )} \\&+c_5\frac{e^{-\alpha \theta (\tau _1/2+\tau _3)}}{(1+\alpha \theta )(1+2\alpha \theta )} +c_6\frac{e^{-\alpha \theta (\tau _1+\tau _3)}}{(1+\alpha \theta )^2} +c_7\frac{e^{-\alpha \theta (\tau _2/2+\tau _3)}}{(1+\alpha \theta )(1+2\alpha \theta )}\\&+c_8\frac{e^{-\alpha \theta (\tau _1/2+\tau _2/2+\tau _3)}}{(1+\alpha \theta )(1+2\alpha \theta )^2} +c_9\frac{e^{-\alpha \theta (\tau _2+\tau _3)-(\tau _2-\tau _1)}}{(1+\alpha \theta )^2(1+2\alpha \theta )^2(1+3\alpha \theta )} ) \end{aligned}$$

where the coefficients are given by Table 4.

Table 4 Coefficients for each site pattern probability—asymmetric

We have from the Yule model that \(\tau _1 \sim Exp(4\beta )\), \((\tau _2-\tau _1) \sim Exp(3\beta )\), and \((\tau _3-\tau _2) \sim Exp(2\beta )\). Then:

$$\begin{aligned} f(\varvec{\tau })= (4\beta )e^{-4\beta \tau _1}(3\beta )e^{-3\beta (\tau _2-\tau _1)}(2\beta )e^{-2\beta (\tau _3-\tau _2)}=(24\beta ^3)e^{-\beta \tau _1-\beta \tau _2-2\beta \tau _3} \end{aligned}$$

Then, integrating over \(f(\varvec{\tau })\) gives:

$$\begin{aligned}&\int _0^{\infty } \int _0^{\tau _3} \int _0^{\tau _2} e^{-a\tau _1-b\tau _2-g\tau _3} (24\beta ^3)e^{-\beta \tau _1-\beta \tau _2-2\beta \tau _3} \mathrm{d}\tau _1 \mathrm{d}\tau _2 \mathrm{d}\tau _3 \\&\quad =\int _0^{\infty }(24\beta ^3) e^{-\tau _3(c+2\beta )} \left( \int _0^{\tau _3}e^{-\tau _2(b+\beta )} \left( \int _0^{\tau _2} e^{-\tau _1(a+\beta )} \mathrm{d}\tau _1\right) \mathrm{d}\tau _2\right) \mathrm{d}\tau _3 \\&\quad =\frac{24\beta ^3}{a+\beta } \int _0^{\infty } e^{-\tau _3(c+2\beta )} \left( \int _0^{\tau _3}e^{-\tau _2(b+\beta )}\left( 1-e^{-\tau _2(a+\beta )}\right) \mathrm{d}\tau _2 \right) \mathrm{d}\tau _3 \\&\quad =\frac{24\beta ^3}{a+\beta }\int _0^{\infty } e^{-\tau _3(c+2\beta )}\left( \frac{1-e^{-\tau _3(b+\beta )}}{b+\beta }-\frac{1-e^{-\tau _3(a+b+2\beta )}}{a+b+2\beta }\right) \mathrm{d}\tau _3\\&\quad = \frac{24\beta ^3}{a+\beta }\left( \frac{1}{(c+\beta )(b+\beta )}-\frac{1}{(b+\beta )(b+c+3\beta )}-\frac{1}{(a+b+2\beta )(c+2\beta )}\right. \\&\left. \qquad +\frac{1}{(a+b+2\beta )(a+b+c+4\beta )}\right) \\&\quad =\frac{24\beta ^3}{(c+2\beta )(b+c+3\beta )(a+b+c+4\beta )} \end{aligned}$$

Applying this formula to each term above gives:

$$\begin{aligned} \delta _k|S= & {} \frac{1}{256}(c_0+c_1\frac{4\beta }{(1+\alpha \theta )(4\beta +\alpha \theta )}+c_2\frac{12\beta ^2}{(1+\alpha \theta )(3\beta +\alpha \theta )(4\beta +\alpha \theta )} \\&+c_3\frac{12\beta ^2}{(1+\alpha \theta )(2+\alpha \theta )(3\beta +\alpha \theta )(4\beta +3\alpha \theta /2)}\\&+c_4\frac{24\beta ^3}{(1+\alpha \theta )(2\beta +\alpha \theta )(3\beta +\alpha \theta )(4\beta +\alpha \theta )} \\&+c_5\frac{24\beta ^3}{(1+\alpha \theta )(2+\alpha \theta )(2\beta +\alpha \theta )(3\beta +\alpha \theta )(4\beta +3\alpha \theta /2)}\\&+c_6\frac{24\beta ^3}{(1+\alpha \theta )^2(2\beta +\alpha \theta )(3\beta +\alpha \theta )(4\beta +2\alpha \theta )} \\&+c_7\frac{24\beta ^3}{(1+\alpha \theta )(2+\alpha \theta )(2\beta +\alpha \theta )(3\beta +3\alpha \theta /2)(4\beta +3\alpha \theta /2)} \\&+c_8\frac{24\beta ^3}{(1+\alpha \theta )(2+\alpha \theta )^2(2\beta +\alpha \theta )(3\beta +3\alpha \theta /2)(4\beta +2\alpha \theta )} \\&+c_9\frac{24\beta ^3}{(1+\alpha \theta )^2(2+\alpha \theta )^2(3+\alpha \theta )(2\beta +\alpha \theta )(3\beta +2\alpha \theta +1)(4\beta +2\alpha \theta )} ) \end{aligned}$$

1.1.2 Symmetric Case

From (Chifman and Kubatko 2015) we have the following, converting to coalescent units from mutation units and using 4 characters \(\{A,C,G,T\}\):

$$\begin{aligned} \delta _k= & {} 1/256(c_0+c_1\frac{e^{-\alpha \theta \tau _1}}{(1+\alpha \theta )} +c_2\frac{e^{-\alpha \theta \tau _2}}{(1+\alpha \theta )} +c_3\frac{e^{-\alpha \theta (\tau _1/2+\tau _2)}}{(1+\alpha \theta )^2} +c_4\frac{e^{-\alpha \theta \tau _3}}{(1+\alpha \theta )}\\&+c_5\frac{e^{-\alpha \theta (\tau _1/2+\tau _3)}}{(1+\alpha \theta )(1+2\alpha \theta )} +c_6\frac{e^{-\alpha \theta (\tau _2/2+\tau _3)}}{(1+\alpha \theta )(1+2\alpha \theta )} +c_7\frac{e^{-\alpha \theta (\tau _1/2+\tau _2/2+\tau _3)}}{(1+\alpha \theta )(1+2\alpha \theta )^2}\\&+c_8\frac{e^{-2\alpha \theta \tau _3-(\tau _3-\tau _1)-(\tau _3-\tau _2)}}{(1+\alpha \theta )^2(1+2\alpha \theta )^2(1+3\alpha \theta )} ) \end{aligned}$$

where the coefficients are given by Table 5.

Table 5 Coefficients for each site pattern probability—symmetric

The prior differs from the asymmetric case in that \(\tau _1<\tau _2\) and \(\tau _2<\tau _1\) occurs with equal probability. The form of the integrals are the same in either case, just substituting the coefficients in front of \(\tau _1\) and \(\tau _2\). As a result, integrating over the prior gives (where the only difference between the terms is the a or b in the middle factor of the denominator):

$$\begin{aligned} \frac{12\beta ^3}{(c+2\beta )(b+c+3\beta )(a+b+c+4\beta )}+\frac{12\beta ^3}{(c+2\beta )(a+c+3\beta )(a+b+c+4\beta )} \end{aligned}$$

Applying this formula to each term above gives:

$$\begin{aligned} \delta _k|S= & {} \frac{1}{256}\bigg (c_0+\frac{c_1+c_2}{1+\alpha \theta }(\frac{2\beta }{4\beta +\alpha \theta }+\frac{6\beta ^2}{(3\beta +\alpha \theta )(4\beta +\alpha \theta )})\\&+c_3\frac{12\beta ^2}{(1+\alpha \theta )^2(3\beta +\alpha \theta )(4\beta +2\alpha \theta )} \\&+c_4\frac{24\beta ^3}{(1+\alpha \theta )(2\beta +\alpha \theta )(3\beta +\alpha \theta )(4\beta +\alpha \theta )} \\&+\frac{(c_5+c_6)12\beta ^2}{(1+\alpha \theta )(2+\alpha \theta )}(\frac{1}{(2\beta +\alpha \theta )(3\beta +\alpha \theta )(4\beta +3\alpha \theta /2)}\\&+\frac{1}{(2\beta +\alpha \theta )(3\beta +3\alpha \theta /2)(4\beta +3\alpha \theta /2)}) \\&+c_7\frac{24\beta ^3}{(1+\alpha \theta )(2+\alpha \theta )^2(2\beta +\alpha \theta )(3\beta +3\alpha \theta /2)(4\beta +2\alpha \theta )} \\&+c_8\frac{24\beta ^3}{(1+\alpha \theta )^2(2+\alpha \theta )^2(3+\alpha \theta )(2\beta +\alpha \theta +2)(3\beta +2\alpha \theta +1)(4\beta +2\alpha \theta )} \bigg ) \end{aligned}$$

1.2 Calculation of \(\varvec{\delta }|(S,\varvec{\tau }))\) for 3-Taxon Trees

The fifteen site pattern probabilities shown above for the 4-taxon case can be mapped down to the five site patterns for three taxa by summing over the fourth taxon we are not interested in. Any of the four taxa can be used, however, we found it simplest to marginalize over the outgroup of the asymmetric tree (see Fig. 3) to get the following relationships (dropping the conditioning on \((S, \varvec{\tau })\) for clarity):

$$\begin{aligned}&p_0=\delta _{XXX}=\delta _{XXXX}+3\delta _{YXXX} \\&p_1=\delta _{YXX}=\delta _{XYXX}+\delta _{XXYY}+2\delta _{YZXX} \\&p_2=\delta _{XXY}=\delta _{XYX}=\delta _{XXXY}+\delta _{XYYX}+2\delta _{YXXZ}=\delta _{XXYX}+\delta _{XYXY}+2\delta _{YXZX} \\&p_3=\delta _{XYZ}=\delta _{XXYZ}+\delta _{XYXZ}+\delta _{XYZX}+\delta _{XYZW} \end{aligned}$$

These probabilities take the form:

$$\begin{aligned} \left\{ \begin{aligned}&p_0=c_0+3c_1+6c_2+12c_3\\&p_1=c_0+3c_1-2c_2-4c_3\\&p_2=c_0-c_1+2c_2-4c_3\\&p_3=c_0-c_1-2c_2+4c_3 \end{aligned} \right. \end{aligned}$$
(6)

where (measuring \(\tau _1\) and \(\tau _2\) in coalescent units):

$$\begin{aligned} \left\{ \begin{aligned}&c_0=1/64\\&c_1=\frac{e^{-\tau _1\alpha \theta }}{64(1+\alpha \theta )}\\&c_2=\frac{e^{-\tau _2\alpha \theta }}{64(1+\alpha \theta }\\&c_3=\frac{e^{-\tau _1\alpha \theta /2}e^{-\tau _2\alpha \theta }}{64(1+2\alpha \theta )(1+\alpha \theta )} \end{aligned} \right. \end{aligned}$$
(7)

It is easily verified that:

$$\begin{aligned} 4p_0+12p_1+24p_2+24p_3=1 \end{aligned}$$
(8)

The coefficients in Eq. 8 arise as follows. X can represent any of A, C, G, or T. Y can represent any of the remaining three characters, and Z any of the remaining two. Finally, the coefficient of \(p_2\) is doubled to account for both \(\delta _{XYX}\) and \(\delta _{XXY}\).

1.3 Calculation of \(\varvec{\delta }|S\) for 3-Taxon Trees

One can see from Eq. 6 that \(\delta _k|(S,\varvec{\tau })\) is a linear combination of terms, so \(\delta _k|S\) is also linear combination of terms. Given \(\tau _1 \sim Exp(3\beta )\) and \((\tau _2-\tau _1) \sim Exp(2\beta )\), the prior is:

$$\begin{aligned} f(\varvec{\tau }|\beta ) = 3\beta e^{-3\beta \tau _1}2\beta e^{-2\beta (\tau _2-\tau _1)}=6\beta ^2e^{-\beta \tau _1-2\beta \tau _2} \end{aligned}$$

Then to integrate over \(f(\varvec{\tau }|\beta )\), each term has the form:

$$\begin{aligned}&\int _0^{\infty } \int _0^{\tau _2} e^{-a\tau _1}e^{-b\tau _2}6\beta ^2e^{-\beta \tau _1-2\beta \tau _2} \mathrm{d}\tau _1 \mathrm{d}\tau _2 \\&=\int _0^{\infty }6\beta ^2 e^{-\tau _2(b+2\beta ))}(\int _0^{\tau _2}e^{-\tau _1(a+\beta ))} \mathrm{d}\tau _1) \mathrm{d}\tau _2 \\&=\frac{6\beta ^2}{a+\beta }\int _0^{\infty }6\beta ^2 e^{-\tau _2(b+2\beta ))}(1-e^{-\tau _2(a+\beta ))}) \mathrm{d}\tau _2 \\&=\frac{6\beta ^2}{a+\beta }(\frac{1}{b+2\beta }-\frac{1}{a+b+2\beta }) \\&= \frac{6\beta ^2}{(b+2\beta )(a+b+3\beta )} \end{aligned}$$

Taken together, \(\delta _k|S\) has the linear form of Eq. 6 with the following terms replacing those of Eq. 7:

$$\begin{aligned} \left\{ \begin{aligned}&c_0=1/64\\&c_1=\frac{3\beta }{(1+\alpha \theta )(3\beta +\alpha \theta )}\\&c_2=\frac{6\beta ^2}{(1+\alpha \theta )(2\beta +\alpha \theta )(3\beta +\alpha \theta )}\\&c_3=\frac{3\beta }{(1+\alpha \theta )(1+2\alpha \theta )(2\beta +\alpha \theta )(3\beta +3\alpha \theta /2)} \end{aligned} \right. \end{aligned}$$
(9)

where \(\alpha =4/3\) from the JC69 model. Comparison to the results in the supplementary material reveals the computational advantages of the Yule model approach.

1.4 Proof of Theorem 1

Proof

Without loss of generality, let \(S_0=(a,(b,c))\) be the true tree and \(\varvec{\tau }_0\) be the true value of \(\varvec{\tau }\). We want to show that \(\forall \epsilon>0 \, \, \exists J_0 : \forall J>J_0 \, \, P({\hat{S}}=S)>1-\epsilon \). First, note that for all values of \((\varvec{\tau }, \theta )\), we have \(\delta _{XXY}=\delta _{XYX}\).

Second, we note using the results of Eq. 6

$$\begin{aligned} \delta _{YXX}|((a,(b,c)),\varvec{\tau }) > \delta _{XYX}|((a,(b,c)),\varvec{\tau }) \end{aligned}$$
(10)
$$\begin{aligned}&\leftrightarrow c_0+3c_1-2c_2-4c_3> c_0-c_1+2c_2-4c_3 \\&\leftrightarrow \frac{e^{-\alpha \tau _1\theta }}{64(1+\alpha \theta )}=c1>c2=\frac{e^{-\alpha \tau _2\theta }}{64(1+\alpha \theta )} \\&\leftrightarrow \tau _1<\tau _2 \end{aligned}$$

which holds w.p.1 by assumption.

Next, note

$$\begin{aligned}&\int _{\varvec{\tau }}\delta _{YXX}|((a,(b,c)),\varvec{\tau })f(\varvec{\tau })\mathrm{d}(\varvec{\tau })=\delta _{YXX}|(a,(b,c)) \\&> \delta _{XYX}|(a,(b,c))=\int _{\varvec{\tau }}\delta _{XYX}|((a,(b,c)),\varvec{\tau })f(\varvec{\tau })\mathrm{d}(\varvec{\tau }) \end{aligned}$$

by properties of expectations from Eq. 10 and since \(f(\varvec{\tau })>0\) a.e. under the prior.

Since each topology (a, (bc)), (b, (ac)), and (c, (ab)) has a prior probability of 1/3, the maximum posterior topology will be the maximum likelihood topology. Recall from Sect. 2.4 that we can permute any site pattern probability given one topology to find a site pattern probability given another topology—e.g., \(\delta _{YXX}|(a,(b,c))=\delta _{XYX}|(b,(a,c))\). So, the likelihood of trees (a, (bc)) and (b, (ac)) given the data are:

$$\begin{aligned} L((a,(b,c))|{\varvec{d}})= & {} c_{{\varvec{d}}} (p_{xxx})^{d_{xxx}}(p_{xxy})^{d_{xxy}}(p_{xyx})^{d_{xyx}}(p_{yxx})^{d_{yxx}}(p_{xyz})^{d_{xyz}} \\ L((b,(a,c))|{\varvec{d}})= & {} c_{{\varvec{d}}} (p_{xxx})^{d_{xxx}}(p_{xxy})^{d_{xxy}}(p_{xyx})^{d_{yxx}}(p_{yxx})^{d_{xyx}}(p_{xyz})^{d_{xyz}} \end{aligned}$$

By cancelling terms in common, one can see that the likelihood ratio comes down to permuting the number of sites that follow the XYX and YXX patterns:

$$\begin{aligned} \frac{L((a,(b,c))|{\varvec{d}})}{L((b,(a,c))|{\varvec{d}})}= (p_{xyx})^{d_{xyx}-d_{yxx}}(p_{yxx})^{d_{yxx}-d_{xyx}} \end{aligned}$$

Together \(p_{yxx}>p_{xyx}\) and \(d_{yxx}>d_{xyx}\) imply that \(\frac{L((a,(b,c))|{\varvec{d}})}{L((b,(a,c))|{\varvec{d}})}>1\), which implies that \({\hat{S}}=S\). As we have shown that \(p_{yxx}>p_{xyx}\), it is sufficient to show that \(\frac{d_{yxx}}{J} \rightarrow p_{yxx}\) and \(\frac{d_{xyx}}{J} \rightarrow p_{xyx}\) for sufficiently large number of sites.

Let \(p_{yxx,0}=\delta _{yxx}|((a,(b,c)),\varvec{\tau }_0)\) and \(p_{xyx,0}=\delta _{xyx}|((a,(b,c)),\varvec{\tau }_0)\). From the SLLN, we have

$$\begin{aligned}&\forall \epsilon _1,\delta _1>0 \, \, \exists J_1 : \forall J>J_1 \, \, P(\frac{d_{yxx}}{J}>p_{yxx,0}-\delta _1)>1-\epsilon _1 \\&\forall \epsilon _2,\delta _2>0 \, \, \exists J_2 : \forall J>J_2 \, \, P(\frac{d_{xyx}}{J}<p_{xyx,0}+\delta _2)>1-\epsilon _2 \end{aligned}$$

Choose \(\delta _1,\delta _2\) such that \(\delta _1+\delta _2<p_{yxx,0}-p_{xyx,0}\), \(\epsilon _1=\epsilon _2=\epsilon /2\), and \(J_0=max\{J_1,J_2\}\) by applying the Bonferroni inequality we have that \(P(\frac{d_yxx}{J}>p_{yxx,0}-\delta _1, p_{xyx,0}+\delta _2>\frac{d_{xyx}}{J})>1-\epsilon \) and the result holds.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, A., Kubatko, L. Bayesian-Weighted Triplet and Quartet Methods for Species Tree Inference. Bull Math Biol 83, 93 (2021). https://doi.org/10.1007/s11538-021-00918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00918-z

Keywords

Navigation