Skip to main content
Log in

Aberrant Behaviours of Reaction Diffusion Self-organisation Models on Growing Domains in the Presence of Gene Expression Time Delays

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Turing’s pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing’s model has received limited attention. Here, we novelly focus on the Gierer–Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing’s mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99–130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing’s model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing’s mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing’s mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdreeff, M., Goodrich, D.W., Pardee, A.B., 2000. Cell proliferation, differentiation and apoptosis. In: The Holland-Frei Cancer Medicine, 5th edn. BC Decker, Hamilton, Chap. 2.

    Google Scholar 

  • Affolter, M., Basler, K., 2007. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat. Rev. Genet. 8, 663–674.

    Article  Google Scholar 

  • Alber, M., Glimm, T., Hentschel, H., Kazmierczakd, B., Zhanga, Y., Zhua, J., Newman, S., 2008. The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bull. Math. Biol. 70, 460–483.

    Article  MathSciNet  MATH  Google Scholar 

  • Alberts, B., Johnson, A., Walter, P., Lewis, J., Raff, M., Roberts, K., 2002. Molecular Biology of the Cell. 5th edn. Garland, New York.

    Google Scholar 

  • Arcuri, P., Murray, J.D., 1986. Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol. 24, 141–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Bard, J., Lauder, I., 1974. How well does Turing’s theory of morphogenesis work? J. Theor. Biol. 45, 501–531.

    Article  Google Scholar 

  • Beguinot, L., Lyall, R.M., Willingham, M.C., Pastan, I., 1984. Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc. Natl. Acad. Sci. 81, 2384–2388.

    Article  Google Scholar 

  • Bunow, B., Kernevez, J.P., Joly, G., Thomas, D., 1980. Pattern formation by reaction–diffusion instabilities: applications to morphogenesis in drosophila. J. Theor. Biol. 84, 629–649.

    Article  MathSciNet  Google Scholar 

  • Chang, W., Liou, W., Pen, H., Chou, H., Chang, Y., Li, W., Chiang, W., Pai, L., 2008. The gradient of Gurken, a long-range morphogen, is directly regulated by Cbl-mediated endocytosis. Development 135, 1923–1933.

    Article  Google Scholar 

  • Chen, Y., Schier, A., 2002. Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr. Biol. 12, 2124–2128.

    Article  Google Scholar 

  • Crampin, E.J., Gaffney, E.A., Maini, P.K., 1999. Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120.

    Article  Google Scholar 

  • Crampin, E.J., Hackborn, W.W., Maini, P.K., 2002. Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747–769.

    Article  Google Scholar 

  • Dillon, R., Maini, P.K., Othmer, H.G., 1994. Pattern formation in generalized Turing systems I. Steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32, 345–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Entchev, E.V., Schwabedissen, A., Gonzalez-Gaitan, M., 2000. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991.

    Article  Google Scholar 

  • Fischer, J.A., Eun, S.H., Doolan, B.T., 2006. Endocytosis, endosome trafficking, and the regulation of drosophila development. Annu. Rev. Cell Dev. Biol. 22, 181–206.

    Article  Google Scholar 

  • Gaffney, E.A., Monk, N.A.M., 2006. Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol. 68, 99–130.

    Article  MathSciNet  Google Scholar 

  • Gierer, A., Meinhardt, H., 1972. A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  • Harris, M.P., Williamson, S., Fallon, J.F., Meinhardt, H., Prum, R.O., 2005. Molecular evidence for an activator–inhibitor mechanism in development of embryonic feather branching. Proc. Natl. Acad. Sci. USA 102(33), 11734–11739.

    Article  Google Scholar 

  • Hentschel, H.G.E., Glimm, T., Glazier, J.A., Newman, S.A., 2004. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B 271, 1713–1722.

    Article  Google Scholar 

  • Jing, X.H., Zhou, S.M., Wang, W.Q., Chen, Y., 2006. Mechanisms underlying long- and short-range nodal signaling in zebrafish. Mech. Dev. 123, 388–394.

    Article  Google Scholar 

  • Kondo, S., Asai, R., 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768.

    Article  Google Scholar 

  • Kondo, S., Iwashita, M., Yamaguchi, M., 2009. How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int. J. Dev. Biol. 53, 851–856.

    Article  Google Scholar 

  • Kulesa, P.M., Cruywagen, G.C., Lubkin, S.R., Maini, P.K., Sneyd, J., Ferguson, M.W.J., Murray, J.D., 1996. On a model mechanism for the spatial patterning of teeth primordia in the Alligator. J. Theor. Biol. 180, 287–296.

    Article  Google Scholar 

  • Lewis, J., 2003. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408.

    Article  Google Scholar 

  • Louvi, A., Artavanis-Tsakonas, S., 2006. Notch signalling in vertebrate neural development. Nat. Rev. 7, 93–102.

    Article  Google Scholar 

  • Madzvamuse, A., 2006. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214, 239–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Madzvamuse, A., Gaffney, E.A., Maini, P.K., 2009. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol. doi:10.1007/s00285-009-0293-4.

    Google Scholar 

  • Miura, T., Shiota, K., 2000a. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–107.

    Article  Google Scholar 

  • Miura, T., Shiota, K., 2000b. TGFβ2 acts as an activator molecule in reaction–diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249.

    Article  Google Scholar 

  • Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in Doublefoot mutant mouse limb-Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573.

    Article  MathSciNet  Google Scholar 

  • Mukherjee, S., Ghosh, R.N., Maxfield, F.R., 1997. Endocytosis. Physiol. Rev. 77(3), 759–803.

    Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, Berlin.

    MATH  Google Scholar 

  • Nakamasu, A., Takahashi, G., Kanbe, A., Kondo, S., 2009. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc. Natl. Acad. Sci. USA 106, 8429–8434.

    Article  Google Scholar 

  • Neville, A., Matthews, P., Byrne, H., 2006. Interactions between pattern formation and domain growth. Bull. Math. Biol. 68(8), 1975–2003.

    Article  MathSciNet  Google Scholar 

  • Newman, S., Muller, G., 2005. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zool. B (Mol. Dev. Evol.) 304, 593–609.

    Article  Google Scholar 

  • Piddini, E., Vincent, J., 2003. Modulation of developmental signals by endocytosis: different means and many ends. Curr. Cell Biol. 15, 474–481.

    Article  Google Scholar 

  • Rogulja, D., Irvine, K.D., 2005. Regulation of cell proliferation by a morphogen gradient. Cell 123, 449–461.

    Article  Google Scholar 

  • Roy, C.L., Wrana, J.L., 2005. Clathrin- and nonclathrin-mediated endocytic regulation of cell signaling. Nat. Rev. Mol. Cell Biol. 6, 112–126.

    Article  Google Scholar 

  • Sakuma, R., Ohnishi, Y., Meno, C., Fujii, H., Juan, H., Takeuchi, J., Ogura, T., Li, E., Miyazono, K., Hamada, H., 2002. Inhibition of nodal signalling by lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7, 401–412.

    Article  Google Scholar 

  • Schnakenberg, J., 1979. Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400.

    Article  MathSciNet  Google Scholar 

  • Seirin-Lee, S., Gaffney, E.A., Monk, N.A.M., 2010. The influence of gene expression time delays on Gierer–Meinhardt pattern formation systems. Bull. Math. Biol. doi:10.1007/s11538-010-9532-5.

    Google Scholar 

  • Solnica-Krezel, L., 2003. Vertebrate development: taming the nodal waves. Curr. Biol. 13, R7–R9.

    Article  Google Scholar 

  • Sorkin, A., von Zastrow, M., 2002. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614.

    Article  Google Scholar 

  • Stoscheck, C.M., Carpenter, G., 2002. Down-regulation of egf receptors: direct demonstration of receptor degradation in human fibroblasts. J. Cell Biol. 98, 1048–1053.

    Article  Google Scholar 

  • Tennyson, C.N., Klamut, H.J., Worton, R.G., 1995. The human dystrophin gene requires 16 hr to be transcribed and is contranscriptionally spliced. Nat. Genet. 9, 184–190.

    Article  Google Scholar 

  • Turing, A., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  • Uriu, K., Iwasa, Y., 2007. Turing pattern formation with two kinds of cells and a diffusive chemical. Bull. Math. Biol. 67, 2515–2536.

    Article  MathSciNet  Google Scholar 

  • Varea, C., Aragon, J., Barrio, R., 1997. Confined Turing patterns in growing systems. Phys. Rev. E 56(1), 1250–1253.

    Article  Google Scholar 

  • Wells, A., Welsh, J.B., Lazar, C.S., Wiley, H.S., Gill, G.N., Rosenfeld, M.G., 1990. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247, 962–964.

    Article  Google Scholar 

  • Zeng, W., Thomas, G., Glazier, J., 2004. Non-Turing stripes and spots: a novel mechanism for biological cell clustering. Physica A 341, 482–494.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Seirin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seirin Lee, S., Gaffney, E.A. Aberrant Behaviours of Reaction Diffusion Self-organisation Models on Growing Domains in the Presence of Gene Expression Time Delays. Bull. Math. Biol. 72, 2161–2179 (2010). https://doi.org/10.1007/s11538-010-9533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9533-4

Keywords

Navigation