Skip to main content
Log in

Estrogen Receptor and the Unfolded Protein Response: Double-Edged Swords in Therapy for Estrogen Receptor-Positive Breast Cancer

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Estrogen receptor α (ERα) is a target for the treatment of ER-positive breast cancer patients. Paradoxically, it is also the initial site for estrogen (E2) to induce apoptosis in endocrine-resistant breast cancer. How ERα exhibits distinct functions, in different contexts, is the focus of numerous investigations. Compelling evidence demonstrated that unfolded protein response (UPR) is closely correlated with ER-positive breast cancer. Treatment with antiestrogens initially induces mild UPR through ERα with activation of three sensors of UPR—PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6)—in the endoplasmic reticulum. Subsequently, these sensors interact with stress-associated transcription factors such as c-MYC, nuclear factor-κB (NF-κB), and hypoxia-inducible factor 1α (HIF1α), leading to acquired endocrine resistance. Paradoxically, E2 further activates sustained secondary UPR via ERα to induce apoptosis in endocrine-resistant breast cancer. Specifically, PERK plays a key role in inducing apoptosis, whereas IRE1α and ATF6 are involved in endoplasmic reticulum stress-associated degradation after E2 treatment. Furthermore, persistent activation of PERK deteriorates stress responses in mitochondria and triggers of NF-κB/tumor necrosis factor α (TNFα) axis, ultimately determining cell fate to apoptosis. The discovery of E2-induced apoptosis has clinical relevance for treatment of endocrine-resistant breast cancer. All of these findings demonstrate that ERα and associated UPR are double-edged swords in therapy for ER-positive breast cancer, depending on the duration and intensity of UPR stress. Herein, we address the mechanistic progress on how UPR leads to endocrine resistance and commits E2 to inducing apoptosis in endocrine-resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Jordan VC. 50th anniversary of the first clinical trial with ICI 46,474 (tamoxifen): then what happened? Endocr Relat Cancer. 2021;28:R11–30.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.

    Article  CAS  PubMed  Google Scholar 

  3. Jordan VC, Brodie AM. Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids. 2007;72:7–25.

    Article  CAS  PubMed  Google Scholar 

  4. Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resist. 2019;2:198–209.

    PubMed  PubMed Central  Google Scholar 

  5. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    Article  CAS  PubMed  Google Scholar 

  6. Fan P, Wang J, Santen RJ, Yue W. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res. 2007;67:1352–60.

    Article  CAS  PubMed  Google Scholar 

  7. Fan P, Agboke FA, Cunliffe HE, Ramos P, Jordan VC. A molecular model for the mechanism of acquired tamoxifen resistance in breast cancer. Eur J Cancer. 2014;50:2866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Leary B, Cutts RJ, Liu Y, Hrebien S, Huang X, Fenwick K, et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 2018;8:1390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.

    Article  CAS  PubMed  Google Scholar 

  10. Giuliano M, Schettini F, Rognoni C, Milani M, Jerusalem G, Bachelot T, et al. Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. Lancet Oncol. 2019;20:1360–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 2015;15:261–75.

    Article  CAS  PubMed  Google Scholar 

  12. Fan P, Maximov PY, Curpan RF, Abderrahman B, Jordan VC. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy. Mol Cell Endocrinol. 2015;418:245–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jordan VC, Curpan R, Maximov PY. Estrogen receptor mutations found in breast cancer metastases integrated with the molecular pharmacology of selective ER modulators. J Natl Cancer Inst. 2015;107(6):djv075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fan P, Jordan VC. Acquired resistance to selective estrogen receptor modulators (SERMs) in clinical practice (tamoxifen & raloxifene) by selection pressure in breast cancer cell populations. Steroids. 2014;90:44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ariazi EA, Cunliffe HE, Lewis-Wambi JS, Slifker MJ, Willis AL, Ramos P, et al. Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time. Proc Natl Acad Sci USA. 2011;108:18879–86.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  17. Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  18. Livezey M, Huang R, Hergenrother PJ, Shapiro DJ. Strong and sustained activation of the anticipatory unfolded protein response induces necrotic cell death. Cell Death Differ. 2018;25:1796–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan P, Griffith OL, Agboke FA, Anur P, Zou X, McDaniel RE, et al. c-Src modulates estrogen-induced stress and apoptosis in estrogen-deprived breast cancer cells. Cancer Res. 2013;73:4510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan P, Jordan VC. PERK, beyond an unfolded protein response sensor in estrogen-induced apoptosis in endocrine-resistant breast cancer. Mol Cancer Res. 2022;20:193–201.

    Article  CAS  PubMed  Google Scholar 

  21. Andruska ND, Zheng X, Yang X, Mao C, Cherian MM, Mahapatra L, et al. Estrogen receptor alpha inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression. Proc Natl Acad Sci USA. 2015;112:4737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shajahan-Haq AN, Cook KL, Schwartz-Roberts JL, Eltayeb AE, Demas DM, Warri AM, et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer. 2014;13:239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hu R, Warri A, Jin L, Zwart A, Riggins RB, Fang HB, et al. NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 2015;35:379–90.

    Article  PubMed  CAS  Google Scholar 

  24. Jordan VC. Turning scientific serendipity into discoveries in breast cancer research and treatment: a tale of PhD students and a 50-year roaming tamoxifen team. Breast Cancer Res Treat. 2021;190(1):19–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf DM, Jordan VC. Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res Treat. 1994;31:117–27.

    Article  CAS  PubMed  Google Scholar 

  26. Yao K, Lee ES, Bentrem DJ, England G, Schafer JI, et al. Antitumor action of physiological estradiol on tamoxifen-stimulated breast tumors grown in athymic mice. Clin Cancer Res. 2000;6:2028–36.

    CAS  PubMed  Google Scholar 

  27. Song RX, Mor G, Naftolin F, McPherson RA, Song J, et al. Effect of long-term estrogen deprivation on apoptotic responses of breast cancer cells to 17 beta-estradiol. J Natl Cancer Inst. 2001;93:1714–23.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis JS, Meeke K, Osipo C, Ross EA, Kidawi N, et al. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J Natl Cancer Inst. 2005;97:1746–59.

    Article  CAS  PubMed  Google Scholar 

  29. Fan P, Cunliffe HE, Maximov PY, Agboke FA, McDaniel RE, Sweeney EE, et al. Integration of downstream signals of insulin-like growth factor-1 receptor by endoplasmic reticulum stress for estrogen-induced growth or apoptosis in breast cancer cells. Mol Cancer Res. 2015;13:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sweeney EE, Fan P, Jordan VC. Mechanisms underlying differential response to estrogen-induced apoptosis in long-term estrogen-deprived breast cancer cells. Int J Oncol. 2014;44:1529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hosford SR, Shee K, Wells JD, Traphagen NA, Fields JL, Hampsch RA, et al. Estrogen therapy induces an unfolded protein response to drive cell death in ER+ breast cancer. Mol Oncol. 2019;13:1778–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan P, Tyagi AK, Agboke FA, Mathur R, Pokharel N, et al. Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells. Cell Death Discov. 2018;4:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ellis MJ, Gao F, Dehdashti F, Jeffe DB, Marcom PK, Carey LA, et al. Lower-dose vs. high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA. 2009;302:774–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chlebowski RT, Anderson GL, Aragaki AK, Manson JE, Stefanick ML, Pan K, et al. Prentice association of menopausal hormone therapy with breast cancer incidence and mortality during long-term follow-up of the Women’s Health Initiative randomized clinical trials. JAMA. 2020;324:369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sweeney EE, Fan P, Jordan VC. Molecular modulation of estrogen-induced apoptosis by synthetic progestins in hormone replacement therapy: an insight into the women’s health initiative study. Cancer Res. 2014;74:7060–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan P, Siwak DR, Abderrahman B, Agboke FA, Yerrum S, Jordan VC. Suppression of nuclear factor-κB by glucocorticoid receptor blocks estrogen-induced apoptosis in estrogen-deprived breast cancer cells. Mol Cancer Ther. 2019;18:1684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jordan VC. Molecular mechanism for breast cancer incidence in the Women’s Health Initiative. Cancer Prev Res (Phila). 2020;13:807–16.

    Article  CAS  Google Scholar 

  38. Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R. Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 2012;72:3337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cook KL, Clarke R. Role of GRP78 in promoting therapeutic-resistant breast cancer. Future Med Chem. 2015;7:1529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fu Y, Li J, Lee AS. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 2007;67:3734–40.

    Article  CAS  PubMed  Google Scholar 

  41. Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Wärri A, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res. 2016;76:5657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu R, Li X, Gao W, Zhou Y, Wey S, Mitra SK, et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin Cancer Res. 2013;19:6802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong D, Stapleton C, Luo B, Xiong S, Ye W, Zhang Y, et al. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis. Cancer Res. 2011;71:2848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13:365–76.

    Article  CAS  PubMed  Google Scholar 

  45. Sengupta S, Sharma CG, Jordan VC. Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells. Horm Mol Biol Clin Investig. 2010;2:235–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122:33–43.

    Article  CAS  PubMed  Google Scholar 

  47. Meng H, Gonzales NM, Lonard DM, Putluri N, Zhu B, Dacso CC, et al. XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis. Nat Commun. 2020;11:6215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou Y, Lee J, Reno CM, Sun C, Park SW, Chung J, et al. Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nat Med. 2011;17:356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winnay JN, Boucher J, Mori MA, Ueki K, Kahn CR. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat Med. 2010;16:438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007;13:351–64.

    Article  CAS  PubMed  Google Scholar 

  51. Hetz C, Papa FR. The Unfolded protein response and cell fate control. Mol Cell. 2018;69:169–81.

    Article  CAS  PubMed  Google Scholar 

  52. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397:271–4.

    Article  CAS  PubMed  Google Scholar 

  53. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6:1099–108.

    Article  CAS  PubMed  Google Scholar 

  54. Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Mol Cancer Res. 2018;16:1073–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sengupta S, Sevigny CM, Bhattacharya P, Jordan VC, Clarke R. Estrogen-induced apoptosis in breast cancers is phenocopied by blocking dephosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) protein. Mol Cancer Res. 2019;17:918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang J, AlTahan A, Jones DT, Buffa FM, Bridges E, Interiano RB, et al. Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc Natl Acad Sci U S A. 2015;112:15172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest. 2020;130:5074–87.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mujcic H, Nagelkerke A, Rouschop KM, Chung S, Chaudary N, Span PN, et al. Hypoxic activation of the PERK/eIF2alpha arm of the unfolded protein response promotes metastasis through induction of LAMP3. Clin Cancer Res. 2013;19:6126–37.

    Article  CAS  PubMed  Google Scholar 

  59. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23:7198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, et al. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene. 2010;29:3881–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.

    Article  CAS  PubMed  Google Scholar 

  62. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013;32:1173–82.

    Article  CAS  PubMed  Google Scholar 

  63. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, et al. Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 2014;4:702–15.

    Article  CAS  PubMed  Google Scholar 

  64. Feng YX, Jin DX, Sokol ES, Reinhardt F, Miller DH, Gupta PB. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat Commun. 2017;8:1079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gubbels Bupp MR. Sex, the aging immune system, and chronic disease. Cell Immunol. 2015;294:102–10.

    Article  CAS  PubMed  Google Scholar 

  66. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc Natl Acad Sci USA. 2000;97:12729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller WR, Larionov A. Molecular effects of oestrogen deprivation in breast cancer. Mol Cell Endocrinol. 2011;340:127–36.

    Article  CAS  PubMed  Google Scholar 

  68. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140:900–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12:703–19.

    Article  CAS  PubMed  Google Scholar 

  70. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature. 2014;508:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller TW, Balko JM, Ghazoui Z, Dunbier A, Anderson H, Dowsett M, et al. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin Cancer Res. 2011;17:2024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sengupta S, Biarnes MC, Jordan VC. Cyclin dependent kinase-9 mediated transcriptional de-regulation of cMYC as a critical determinant of endocrine-therapy resistance in breast cancers. Breast Cancer Res Treat. 2014;143:113–24.

    Article  CAS  PubMed  Google Scholar 

  73. Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124:398–412.

    Article  CAS  PubMed  Google Scholar 

  74. Dejure FR, Eilers M. MYC and tumor metabolism: chicken and egg. EMBO J. 2017;36:3409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5:1024–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao N, Cao J, Xu L, Tang Q, Dobrolecki LE, Lv X, et al. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest. 2018;128:1283–99.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 2012;122:4621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, et al. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun. 2019;10:323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xie H, Tang CA, Song JH, Mancuso A, Del Valle JR, Cao J, et al. IRE1alpha RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers. J Clin Invest. 2018;128:1300–16.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  PubMed  Google Scholar 

  82. Fan P, Abderrahman B, Chai TS, Yerrum S, Jordan VC. Targeting peroxisome proliferator-activated receptor γ to increase estrogen-induced apoptosis in estrogen-deprived breast cancer cells. Mol Cancer Ther. 2018;17:2732–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chadwick CC, Chippari S, Matelan E, Borges-Marcucci L, Eckert AM, Keith JC, et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-κB transcriptional activity. Proc Natl Acad Sci USA. 2005;102:2543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Bosscher K, Vanden Berghe W, Haegeman G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene. 2006;25:6868–86.

    Article  PubMed  CAS  Google Scholar 

  85. Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, et al. NF-κB activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA. 2004;101:10137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sirinian C, Papanastasiou AD, Schizas M, Spella M, Stathopoulos GT, Repanti M, et al. RANK-c attenuates aggressive properties of ER-negative breast cancer by inhibiting NF-κB activation and EGFR signaling. Oncogene. 2018;37:5101–14.

    Article  CAS  PubMed  Google Scholar 

  87. Litchfield LM, Appana SN, Datta S, Klinge CM. COUP-TFII inhibits NFkappaB activation in endocrine-resistant breast cancer cells. Mol Cell Endocrinol. 2014;382:358–67.

    Article  CAS  PubMed  Google Scholar 

  88. Shah KN, Wilson EA, Malla R, Elford HL, Faridi JS. Targeting ribonucleotide reductase M2 and NF-κB activation with Didox to circumvent tamoxifen resistance in breast cancer. Mol Cancer Ther. 2015;14:2411–21.

    Article  CAS  PubMed  Google Scholar 

  89. Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell. 2006;124:615–29.

    Article  CAS  PubMed  Google Scholar 

  90. Fan P, Jordan VC. How PERK kinase conveys stress signals to nuclear factor-κB to mediate estrogen-induced apoptosis in breast cancer cells? Cell Death Dis. 2018;9:842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Riggins RB, Zwart A, Nehra R, Clarke R. The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther. 2005;4:33–41.

    Article  CAS  PubMed  Google Scholar 

  94. Jordan VC. Linking estrogen-induced apoptosis with decreases in mortality following long term adjuvant tamoxifen therapy. J Natl Cancer Inst. 2014;106:296.

    Article  CAS  Google Scholar 

  95. Obiorah I, Jordan VC. Scientific rationale for postmenopause delay in the use of conjugated equine estrogens among postmenopausal women that causes reduction in breast cancer incidence and mortality. Menopause. 2013;20:372–82.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Beral V, Reeves G, Bull D, Green J, Million Women Study Collaborators. Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst. 2011;103:296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jordan VC. Avoiding the bad and enhancing the good of soy supplements in breast cancer. J Natl Cancer Inst. 2014;106:dju233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Vo DH, Hartig R, Weinert S, Haybaeck J, Nass N. G-protein-coupled estrogen receptor (GPER)-specific agonist G1 induces ER stress leading to cell death in MCF-7 cells. Biomolecules. 2019;9:503.

    Article  CAS  PubMed Central  Google Scholar 

  99. Lin JH, Li H, Zhang Y, Ron D, Walter P. Divergent effects of PERK and IRE1 signaling on cell viability. PLoS ONE. 2009;4:e4170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318:944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan P, Agboke FA, McDaniel RE, Sweeney EE, Zou X, Creswell K, et al. Inhibition of c-Src blocks oestrogen-induced apoptosis and restores oestrogen-stimulated growth in long-term oestrogen-deprived breast cancer cells. Eur J Cancer. 2014;50:457–68.

    Article  CAS  PubMed  Google Scholar 

  102. Cvoro A, Tzagarakis-Foster C, Tatomer D, Paruthiyil S, Fox MS, et al. Distinct roles of unliganded and liganded estrogen receptors in transcriptional repression. Mol Cell. 2006;21:555–64.

    Article  CAS  PubMed  Google Scholar 

  103. Della Torre S, Benedusi V, Fontana R, Maggi A. Energy metabolism and fertility: a balance preserved for female health. Nat Rev Endocrinol. 2014;10:13–23.

    Article  PubMed  Google Scholar 

  104. Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends Endocrinol Metab. 2019;30:25–38.

    Article  CAS  PubMed  Google Scholar 

  105. Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell. 2012;22:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Haikala HM, Anttila JM, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ellis MJ, Llombart-Cussac A, Feltl D, Dewar JA, Jasiówka M, Hewson N, et al. Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: overall survival analysis from the phase II FIRST Study. J Clin Oncol. 2015;33:3781–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ishii Y, Papa L, Bahadur U, Yue Z, Aguirre-Ghiso J, Shioda T, et al. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a proapoptotic unfolded protein response. Clin Cancer Res. 2011;17:2292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cook KL, Wärri A, Soto-Pantoja DR, Clarke PAG, Cruz MI, Zwart A, et al. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin Cancer Res. 2014;20:3222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dwane L, O’Connor AE, Das S, Moran B, Mulrane L, Pinto-Fernandez A, et al. A functional genomic screen identifies the deubiquitinase USP11 as a novel transcriptional regulator of ERα in breast cancer. Cancer Res. 2020;80:5076–88.

    Article  CAS  PubMed  Google Scholar 

  111. Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med. 2017;214:245–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013;73:1993–2002.

    Article  CAS  PubMed  Google Scholar 

  114. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481:389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C, et al. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci USA. 2017;114:E4482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell. 2016;165:593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2021 Online ahead of print.

  118. Jordan VC. The new biology of estrogen-induced apoptosis applied to treat and prevent breast cancer. Endocr Relat Cancer. 2015;22:R1-31.

    Article  CAS  PubMed  Google Scholar 

  119. Jordan VC, Fan P, Abderrahman B, Maximov PY, Hawsawi YM, Bhattacharya P, Pokharel N. Sex steroid induced apoptosis as a rational strategy to treat anti-hormone resistant breast and prostate cancer. Discov Med. 2016;21:411–27.

    PubMed  Google Scholar 

  120. Maximov PY, Abderrahman B, Curpan RF, Hawsawi YM, Fan P, Jordan VC. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr Relat Cancer. 2018;25:R83–113.

    Article  CAS  PubMed  Google Scholar 

  121. Jin Y, Saatcioglu F. Targeting the unfolded protein response in hormone-regulated cancers. Trends Cancer. 2020;6:160–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Don Norwood of Scientific Publications, Research Medical Library at the University of Texas MD Anderson Cancer Center for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Craig Jordan.

Ethics declarations

Funding

This work was supported by the Susan G. Komen for the Cure Foundation (SAC100009; to VC J), the NIH/NCI, under award number P30CA016672 (PW P), the Cancer Prevention Research Institute of Texas (the STARs and STARs plus awards; to VC J), the George and Barbara Bush Foundation for Innovative Cancer Research (to VCJ), and the benefactors of the Dallas/Fort Worth Living Legend Chair of Cancer Research (to VCJ).

Conflict of interest

Ping Fan and V. Craig Jordan declared that they have no conflicts of interest that might be relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Jordan, V.C. Estrogen Receptor and the Unfolded Protein Response: Double-Edged Swords in Therapy for Estrogen Receptor-Positive Breast Cancer. Targ Oncol 17, 111–124 (2022). https://doi.org/10.1007/s11523-022-00870-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-022-00870-5

Navigation