Skip to main content

Advertisement

Log in

Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Fatty acid synthase (FAS) is highly expressed in many kinds of human cancers, including liver cancer. Curcumin is the major active ingredient of Curcuma longa and has long been used to treat a variety of maladies. In the present study, we investigated the potential use of curcumin as a kind of FAS inhibitor for chemoprevention of liver cancer. Curcumin induced HepG2 cell apoptosis with the IC50 value of 8.84 μg/ml. It inhibited intracellular FAS activity, and downregulated expression and mRNA level of FAS in a dose-dependent manner. In addition, sodium palmitate could rescue cell apoptosis induced by curcumin. Further studies reviewed that siRNA of FAS showed similar results as curcumin. These findings suggested that curcumin might be useful for preventing or treating liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–77

    Article  CAS  PubMed  Google Scholar 

  2. Mashima T, Seimiya H, Tsuruo T (2009) De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Brit J Cancer 100:1369–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rossi S, Ou W, Tang D et al (2006) Gastrointestinal stromal tumours overexpress fatty acid synthase. J Pathol 209:369–75

    Article  CAS  PubMed  Google Scholar 

  4. Flavin R, Peluso S, Lnguyen P (2010) Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 6:551–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kuhajda FP, Pizer ES, Li JN et al (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. P Natl Acad Sci USA 97:3450–4

    Article  CAS  Google Scholar 

  6. Alò PL, Visca P, Trombetta G et al (1999) Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 85:35–40

    PubMed  Google Scholar 

  7. Gansler TS, Hardman W, Hunt DA et al (1997) Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 28:686–92

    Article  CAS  PubMed  Google Scholar 

  8. Innocenzi D, Alò PL, Balzani A et al (2003) Fatty acid synthase expression in melanoma. J Cutan Pathol 30:23–8

    Article  CAS  PubMed  Google Scholar 

  9. Rashid A, Pizer ES, Moga M et al (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150:201–8

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Sekiguchi M, Shiroko Y, Arai T et al (2001) Biological characteristics and chemosensitivity profile of four human anaplastic thyroid carcinoma cell lines. Biomed Pharmacother 55:466–74

    Article  CAS  PubMed  Google Scholar 

  11. Brusselmans K, De Schrijver E, Heyns W et al (2003) Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 106:856–862

    Article  CAS  PubMed  Google Scholar 

  12. Menendez JA, Lupu R (2004) Fatty acid synthase-catalyzed de novo fatty acid biosynthesis: from anabolic-energy-storage pathway in normal tissues to jack-of-all-trades in cancer cells. Arch Immunol Ther Exp 52:414–26

    CAS  Google Scholar 

  13. Puig T, Vázquez-Martín A, Relat J et al (2008) Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res Treat 109:471–9

    Article  CAS  PubMed  Google Scholar 

  14. Braga ME, Leal PF, Carvalho JE et al (2002) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51:6604–11

    Article  Google Scholar 

  15. Khor TO, Keum YS, Lin W et al (2006) Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immune deficient mice. Cancer Res 66:613–21

    Article  CAS  PubMed  Google Scholar 

  16. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    Article  CAS  PubMed  Google Scholar 

  17. Kunnumakkara AB, Guha S, Krishnan S et al (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB regulated gene products. Cancer Res 67:3853–61

    Article  CAS  PubMed  Google Scholar 

  18. Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11:495–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wu SH, Hang LW, Yang JS et al (2010) Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade and mitochondria-dependent pathways. Anticancer Res 30:2125–33

    CAS  PubMed  Google Scholar 

  20. Xu Y, Zhang J, Han J et al (2012) Curcumin inhibits tumor proliferation induced by neutrophil elastase through the upregulation of α1-antitrypsin in lung cancer. Mol Oncol 6:405–17

    Article  CAS  PubMed  Google Scholar 

  21. Ruby AJ, Kuttan G, Babu KD et al (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83

    Article  CAS  PubMed  Google Scholar 

  22. Kumar V, Lewis SA, Mutalik S et al (2002) Biodegradable microspheres of curcumin for treatment of inflammation. Indian J Physiol Pharmacol 46:209–17

    CAS  PubMed  Google Scholar 

  23. Zhao J, Sun X, Ye F et al (2011) Suppression of fatty acid synthase, differentiation and lipid accumulation in adipocytes by curcumin. Mol Cell Biochem 351:19–28

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Tian W (2001) Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem Biophys Res Commun 288:1200–6

    Article  CAS  PubMed  Google Scholar 

  25. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–421

    Article  CAS  PubMed  Google Scholar 

  26. Milgraum LZ, Witters LA, Pasternack GR et al (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in-situ breast carcinoma. Clin Cancer Res 3:2115–20

    CAS  PubMed  Google Scholar 

  27. Choi WI, Jeon BN, Park H et al (2008) Proto oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN). J Biol Chem 283:29341–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66:5977–80

    Article  CAS  PubMed  Google Scholar 

  29. Bandyopadhyay S, Pai SK, Watabe M et al (2005) FAS expression inversely correlates with PTEN level in prostate cancer and a PI3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene 24:5389–95

    Article  CAS  PubMed  Google Scholar 

  30. Radhakrishna PG, Srivastava AS, Hassanein TI et al (2004) Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208:163–70

    Article  Google Scholar 

  31. Atcher H, Planalp R, Cho J et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci 65:1631–52

    Article  Google Scholar 

  32. Ströfer M, Jelkmann W, Depping R (2011) Curcumin decreases survival of Hep3B liver and MCF-7 breast cancer cells: the role of HIF. Strahlenther Onkol 187:393–400

    Article  PubMed  Google Scholar 

  33. Aggarwal S, Ichikawa H, Takada Y et al (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaB alpha kinase and Akt activation. Mol Pharmacol 69:195–206

    CAS  PubMed  Google Scholar 

  34. Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–43

    Article  PubMed  Google Scholar 

  35. Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60:1665–76

    Article  CAS  PubMed  Google Scholar 

  36. Patel BB, Sengupta R, Qazi S et al (2008) Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer 122:267–73

    Article  CAS  PubMed  Google Scholar 

  37. Cheng AL, Hsu CH, Lin JK et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–900

    CAS  PubMed  Google Scholar 

  38. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  39. Pizer ES, Wood FD, Heine HS et al (1996) Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56:1189–93

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Science and Technology Projects for Outstanding Young in Life Sciences (KSCX2-EW-Q-19), Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KSCX2-EW-J-29), as well as K.C. Wong Education Foundation, Hong Kong.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Tian, W. & Ma, X. Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase. Targ Oncol 9, 279–286 (2014). https://doi.org/10.1007/s11523-013-0286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-013-0286-5

Keywords

Navigation