Skip to main content
Log in

Hypomagnesaemia and targeted anti-epidermal growth factor receptor (EGFR) agents

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Currently, targeted anti-epidermal growth factor receptor (EGFR) agents have an important role in the treatment of various cancers. These drugs, particularly anti-EGFR monoclonal antibodies, may induce electrolyte disorders, such as hypomagnesaemia and hypocalcaemia. Early symptoms of magnesium deficiency can easily go unrecognized. However, hypomagnesaemia can in rare cases lead to serious clinical manifestations, including cardiac arrhythmias or convulsions. The elective tubular expression of renal EGF/EGFR explains the mechanism of this class-related drug side effect. Inhibition of the EGFR induces a mutated-like transient receptor potential cation channel, subfamily M, member 6 (TRPM6) syndrome, characterized by urinary magnesium and calcium wasting. The risk of hypomagnesaemia is associated with treatment duration. It is a reversible toxicity; the recovery of magnesium serum levels is usually seen 4–6 weeks of stopping the anti-EGFR antibody. Using literature from peer-reviewed journals, this review reports the clinical trials findings and discusses the mechanisms and the treatment of hypomagnesaemia induced by anti-EGFR targeted agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vivancoa I, Mellinghoff K (2010) Epidermal growth factor receptor inhibitors in oncology. Curr Op Oncol 22:573–578

    Article  Google Scholar 

  2. Izzedine H, Bahleda R, Khayat D et al (2010) Electrolyte disorders related to EGFR-targeting drugs. Crit Rev Oncol Hematol 73:213–219

    Article  PubMed  Google Scholar 

  3. Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echari M, Tabernero J (2009) Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev 35:354–363

    Article  PubMed  CAS  Google Scholar 

  4. Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81:51–84

    PubMed  CAS  Google Scholar 

  5. Romani AM, Scarpa A (2000) Regulation of cellular magnesium. Front Bioscien 5:720–734

    Article  Google Scholar 

  6. Ferment O, Garnier PE, Touitou Y (1987) Comparison of the feedback effect of magnesium and calcium on parathyroid hormone secretion in man. J Endocrinol 113:117–122

    Article  PubMed  CAS  Google Scholar 

  7. Cholst IN, Steinberg SF, Tropper PJ, Fox HE, Segre GV, Bilezikian JP (1984) The influence of hypomagnesaemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 310:1221–1225

    Article  PubMed  CAS  Google Scholar 

  8. Konrad M, Schlingmann KP, Gudermann T (2004) Insights into the molecular nature of magnesium homeostasis. Am J Physiol Renal Physiol 286:599–605

    Article  Google Scholar 

  9. Saif MW (2008) Management of Hypomagnesemia in cancer patients receiving chemotherapy. J Support Oncol 6:243–248

    PubMed  Google Scholar 

  10. Agus ZS (1999) Hypomagnesemia. J Am Soc Nephrol 10:1616–1622

    PubMed  CAS  Google Scholar 

  11. Schrag D, Chung KY, Flombaum C, Saltz L (2005) Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97:1221–1224

    Article  PubMed  CAS  Google Scholar 

  12. Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6:152–156

    Article  PubMed  CAS  Google Scholar 

  13. Erbitux package insert. March 2006. ImClone Systems Incorporated, New York, NY 10014, USA, and Bristol-Myers Squibb Company, Princeton, NY 08543, USA

  14. Tejpar S, Piessevaux H, Claes K et al (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8:387–394

    Article  PubMed  CAS  Google Scholar 

  15. Liu L, Cao Y, Tan A, Liao C, Gao F (2009) Cetuximab-based therapy versus non-cetuximab therapy for advanced cancer: a meta-analysis of 17 randomized controlled trials. Cancer Chemother Pharmacol 65:849–861

    Article  PubMed  Google Scholar 

  16. Jonker DJ, O’Callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048

    Article  PubMed  CAS  Google Scholar 

  17. Sobrero AF, Maurel J, Fehrenbacher L et al (2008) EPIC: phase III trial of cetuximab plus irinotecan after Fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319

    Article  PubMed  CAS  Google Scholar 

  18. Tol J, Koopman M, Rodenburg CJ et al (2008) A randomised phase III study on capecitabine, oxaliplatin and bevacizumab with or without cetuximab in first-line advanced colorectal cancer, the CAIRO2 study of the Dutch Colorectal Cancer Group (DCCG). An interim analysis of toxicity. Ann Oncol 19:734–738

    Article  PubMed  CAS  Google Scholar 

  19. Butts CA, Bodkin D, Middleman EL et al (2007) Randomized phase II study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer. J Clin Oncol 25(36):5777–5784, Erratum in: J Clin Oncol (2008) 26:3295

    Article  PubMed  CAS  Google Scholar 

  20. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA, Eastern Cooperative Oncology Group (2005) Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 23(34):8646–8654, Erratum in: J Clin Oncol (2006) 24:724

    Article  PubMed  Google Scholar 

  21. Vermorken JB, Mesia R, Rivera F et al (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127

    Article  PubMed  CAS  Google Scholar 

  22. Vincenzi B, Santini D, Galluzzo S et al (2008) Patients treated with cetuximab plus irinotecan as early magnesium reduction in advanced colorectal predictive factor of efficacy and outcome. Clin Cancer Res 14:4219–4224

    Article  PubMed  CAS  Google Scholar 

  23. Vincenzi B, Galluzzo S, Santini D et al (2011) Early magnesium modifications as a surrogate marker of efficacy of cetuximab-based anticancer treatment in KRAS wild-type advanced colorectal cancer patients. Ann Oncol 22:1141–1146. doi:10.1093/annonc/mdq550

    Article  PubMed  CAS  Google Scholar 

  24. Vickers MM, Karapetis CS, Tu D et al (2011) The influence of hypomagnesemia (hMg) on overall survival (OS) in phase III randomized study of cetuximab (CET) plus best supportive care (BSC) versus BSC: NCIC CTG/AGITG CO. 17. J Clin Oncology 29(suppl):abstr. 3601

    Google Scholar 

  25. Fakih MG (2008) Management of Anti-EGFR–Targeting Monoclonal Antibody–Induced Hypomagnesemia. Oncology. Vol. 22 No. 1. http://www.cancernetwork.com/display/article/10165/1147011 1

  26. Van Cutsem E, Peeters M, Siena S et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664

    Article  PubMed  Google Scholar 

  27. Hecht JR, Mitchell E, Chidiac T et al (2008) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27:672–680

    Article  PubMed  Google Scholar 

  28. Dimke H, van der Wijst J, Alexander TR et al (2010) Effects of the EGFR inhibitor erlotinib on magnesium handling. J Am Soc Nephrol 21:1309–1316

    Article  PubMed  CAS  Google Scholar 

  29. Hoenderop JG, Bindels RJ (2005) Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 16:15–26

    Article  PubMed  CAS  Google Scholar 

  30. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    Article  PubMed  CAS  Google Scholar 

  31. Voets T, Nilius B, Hoefs S et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Article  PubMed  CAS  Google Scholar 

  32. Simon DB, Lu Y, Choate KA et al (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5424):103–106

    Article  PubMed  CAS  Google Scholar 

  33. Schlingmann KP, Weber S, Peters M et al (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  PubMed  CAS  Google Scholar 

  34. Walder RY, Landau D, Meyer P et al (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  PubMed  CAS  Google Scholar 

  35. Müller D, Kausalya PJ, Meij IC, Hunziker W (2006) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: blocking endocytosis restores surface expression of a novel claudin-16 mutant that lacks the entire C-terminal cytosolic tail. Hum Mol Genet 15:1049–1058

    Article  PubMed  Google Scholar 

  36. Konrad M, Schaller A, Seelow D et al (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  Google Scholar 

  37. Groenestege WM, Thébault S, van der Wijst J et al (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267

    Article  PubMed  CAS  Google Scholar 

  38. Salido EC, Barajas L, Lechago J, Laborde NP, Fisher DA (1986) Immunocytochemical localization of epidermal growth factor in mouse kidney. J Histochem Cytochem 34:1155–1160

    Article  PubMed  CAS  Google Scholar 

  39. Gesualdo L, Di Paolo S, Calabró A et al (1996) Expression of epidermal growth factor and its receptor in normal and diseased human kidney: an immunohistochemical and in situ hybridization study. Kidney Int 49:656–665

    Article  PubMed  CAS  Google Scholar 

  40. Rall LB, Scott J, Bell GI et al (1985) Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature 313:228–231

    Article  PubMed  CAS  Google Scholar 

  41. Bell GI, Fong NM, Stempien MM et al (1986) Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucl Acids Res 14:8427–8446

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

S. Tejpar receives research funding and is on the Advisory Board of MerckSerono. E. Van Cutsem receives research funding and is on the advisory board of MerckSerono and receives research funding from Amgen. The other authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Van Cutsem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, A., Tejpar, S., Prenen, H. et al. Hypomagnesaemia and targeted anti-epidermal growth factor receptor (EGFR) agents. Targ Oncol 6, 227–233 (2011). https://doi.org/10.1007/s11523-011-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-011-0200-y

Keywords

Navigation