Skip to main content
Log in

Image reconstruction method for incomplete CT projection based on self-guided image filtering

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In some fields of medical diagnosis or industrial nondestructive testing, it is difficult to obtain complete computed tomography (CT) data due to the limitation of radiation dose or other factors. Therefore, image reconstruction of incomplete projection data is the focus of this paper. In this paper, a new image reconstruction model based on self-guided image filtering (SGIF) term is proposed for few-view and segmental limited-angle (SLA) CT reconstruction. Then the alternating direction method (ADM) is used to solve this model. For simplicity, we call it ADM-SGIF method. The key idea of ADM-SGIF method is to use the reconstructed image itself as a reference and utilize its structural features to guide CT reconstruction. This method can effectively preserve image structures and remove shading artifacts. To validate the effectiveness of the proposed reconstruction method, we conduct digital phantom and real CT data experiments. The results indicate that ADM-SGIF method outperforms competing methods, including total variation (TV), relative total variation (RTV), and L0-norm minimization solved by ADM (ADM-L0) methods, in both subjective and objective evaluations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pontone G, Scafuri S, Mancini ME, Agalbato C, Guglielmo M, Baggiano A et al (2021) Role of computed tomography in COVID-19. J Cardiovasc Comput Tomogr 15(1):27–36

    Article  PubMed  Google Scholar 

  2. Danala G, Ray B, Desai M, Heidari M, Mirniaharikandehei S, Maryada SKR et al (2022) Developing new quantitative CT image markers to predict prognosis of acute ischemic stroke patients. J Xray Sci Technol 30(3):459–475

    PubMed  PubMed Central  Google Scholar 

  3. De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Ann 63(2):655–677

    Article  Google Scholar 

  4. Villarraga-Gómez H, Herazo EL, Smith ST (2019) X-ray computed tomography: from medical imaging to dimensional metrology. Precis Eng 60:544–569

    Article  Google Scholar 

  5. Naresh K, Khan K, Umer R, Cantwell WJ (2020) The use of X-ray computed tomography for design and process modeling of aerospace composites: A review. Mater Des 190:108553

    Article  CAS  Google Scholar 

  6. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  PubMed  Google Scholar 

  7. Abbas S, Lee T, Shin S, Lee R, Cho S (2013) Effects of sparse sampling schemes on image quality in low-dose CT. Med Phys 40(11):111915

    Article  PubMed  Google Scholar 

  8. Li X, Chen Z, Xing Y (2012) Multi-segment limited-angle CT reconstruction via a BM3D filter. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). Anaheim, CA, USA, pp 2390–2394. https://doi.org/10.1109/NSSMIC.2012.6551544

  9. Bao P, Zhou J, Zhang Y (2018) Few-view CT reconstruction with group-sparsity regularization. International Journal for Numerical Methods in Biomedical Engineering 34(9):e3101

    Article  PubMed  Google Scholar 

  10. Evangelista D, Morotti E, Piccolomini EL (2023) RISING: A new framework for model-based few-view CT image reconstruction with deep learning. Comput Med Imaging Graph 103:102156

    Article  PubMed  Google Scholar 

  11. Yim D, Lee S, Nam K, Lee D, Kim DK, Kim J-S (2021) Deep learning-based image reconstruction for few-view computed tomography. Nucl Instrum Methods Phys Res, Sect A 1011:165594

    Article  CAS  Google Scholar 

  12. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29(3):471–481

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging 6(1):81–94

    Article  CAS  PubMed  Google Scholar 

  14. Sidky EY, Kao C-M, Pan X (2006) Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J Xray Sci Technol 14(2):119–139

    Google Scholar 

  15. Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tian Z, Jia X, Yuan K, Pan T, Jiang SB (2011) Low-dose CT reconstruction via edge-preserving total variation regularization. Phys Med Biol 56(18):5949

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jin X, Li L, Chen Z, Zhang L, Xing Y (2010) Anisotropic total variation for limited-angle CT reconstruction. IEEE Nuclear Science Symposuim & Medical Imaging Conference. Knoxville, TN, USA, pp 2232–2238. https://doi.org/10.1109/NSSMIC.2010.5874180

  18. Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM transactions on graphics (TOG) 31(6):1–10

    Google Scholar 

  19. Liu Y, Ma J, Fan Y, Liang Z (2012) Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys Med Biol 57(23):7923

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li H, Chen X, Wang Y, Zhou Z, Zhu Q, Yu D (2014) Sparse CT reconstruction based on multi-direction anisotropic total variation (MDATV). Biomed Eng Online 13(1):1–27

    Article  CAS  Google Scholar 

  21. Wang T, Nakamoto K, Zhang H, Liu H (2017) Reweighted anisotropic total variation minimization for limited-angle CT reconstruction. IEEE Trans Nucl Sci 64(10):2742–2760

    Article  ADS  Google Scholar 

  22. Qu Z, Zhao X, Pan J, Chen P (2019) Sparse-view CT reconstruction based on gradient directional total variation. Meas Sci Technol 30(5):055404

    Article  ADS  CAS  Google Scholar 

  23. Sidky EY, Chartrand R, Pan X (2007) Image reconstruction from few views by non-convex optimization. IEEE Nuclear Science Symposium Conference Record 5:3526–3530

    Google Scholar 

  24. Li L, Zhu L, Mei S (2020) Shannon-Cosine Wavelet Precise Integration Denoising Method for Locust Slice Image. Trans Chin Soc Agric Mach 51:186–192

    Google Scholar 

  25. Dash S, Verma S, Jhanjhi N, Masud M, Baz M (2022) Curvelet Transform Based on Edge Preserving Filter for Retinal Blood Vessel Segmentation. Computers, Materials & Continua 71(2):2459–2476

    Article  Google Scholar 

  26. Tan L, Yu X (2019) Medical image fusion based on fast finite shearlet transform and sparse representation. Comput Math Methods Med 2019:3503267

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  27. Xu Z, Wu M, Fan W (2021) Sparse-based defect detection of weld feature guided waves with a fusion of shear wave characteristics. Measurement 174:109018

    Article  Google Scholar 

  28. Wang G, Ye JC, De Man B (2020) Deep learning for tomographic image reconstruction. Nature Machine Intelligence 2(12):737–748

    Article  Google Scholar 

  29. Zhang M, Gu S, Shi Y (2022) The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. Complex & intelligent systems 8(6):5545–5561

    Article  Google Scholar 

  30. Dhiman G, Kumar AV, Nirmalan R, Sujitha S, Srihari K, Yuvaraj N et al (2023) Multi-modal active learning with deep reinforcement learning for target feature extraction in multi-media image processing applications. Multimedia Tools and Applications 82(4):5343–5367

    Article  Google Scholar 

  31. Greffier J, Dabli D, Hamard A, Belaouni A, Akessoul P, Frandon J et al (2022) Effect of a new deep learning image reconstruction algorithm for abdominal computed tomography imaging on image quality and dose reduction compared with two iterative reconstruction algorithms: a phantom study. Quant Imaging Med Surg 12(1):229

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao H, Zhang L, Xing Y, Chen Z, Zhang J, Cheng J (2007) Volumetric imaging from a multisegment straight-line trajectory and a practical reconstruction algorithm. Opt Eng 46(7):077004

    Article  ADS  Google Scholar 

  33. Shen L, Xing Y (2015) Multienergy CT acquisition and reconstruction with a stepped tube potential scan. Med Phys 42(1):282–296

    Article  PubMed  Google Scholar 

  34. Gong C, Zeng L, Guo Y, Wang C, Wang S (2018) Multiple limited-angles computed tomography reconstruction based on multi-direction total variation minimization. Rev Sci Instrum 89(12):125121

    Article  ADS  PubMed  Google Scholar 

  35. Chen Z, Jin X, Li L, Wang G (2013) A limited-angle CT reconstruction method based on anisotropic TV minimization. Phys Med Biol 58(7):2119

    Article  PubMed  Google Scholar 

  36. Guo Y, Zeng L, Wang C, Zhang L (2017) Image reconstruction model for the exterior problem of computed tomography based on weighted directional total variation. Appl Math Model 52:358–377

    MathSciNet  Google Scholar 

  37. Yu W, Wang C, Huang M (2017) Edge-preserving reconstruction from sparse projections of limited-angle computed tomography using L0-regularized gradient prior. Rev Sci Instrum 88(4):043703

    Article  ADS  PubMed  Google Scholar 

  38. Gong C, Shen Z, He Y (2022) Segmental limited-angle CT reconstruction based on image structural prior. J X-Ray Sci Technol 30(6):1127–1154

    Google Scholar 

  39. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  PubMed  Google Scholar 

  40. Ji D, Qu G, Liu B (2016) Simultaneous algebraic reconstruction technique based on guided image filtering. Opt Express 24(14):15897–15911

    Article  ADS  PubMed  Google Scholar 

  41. Guo X, Li Y, Ma J, Ling H (2020) Mutually Guided Image Filtering. IEEE Trans Pattern Anal Mach Intell 42(3):694–707

    Article  PubMed  Google Scholar 

  42. Szeliski R (2006) Locally Adapted Hierarchical Basis Preconditioning. Association for Computing Machinery 25(3):1135–1143

    Google Scholar 

  43. Krishnan D, Szeliski R (2011) Multigrid and multilevel preconditioners for computational photography. ACM Transactions on Graphics (TOG) 30(6):1–10

    Article  Google Scholar 

  44. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61701174), General Project of Chongqing Natural Science Foundation (cstc2021jcyj-msxmX0679), Science and Technology Research Program of Chongqing Education Commission of China (KJQN202000808), Scientific Research Foundation of Chongqing Technology and Business University (2056023), and Natural Science Foundation of Chongqing, China (CSTB2022NSCQ-MSX0610). In addition, we sincerely thank Yue Wu for her help in drawing part of the Graphical Abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changcheng Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.10 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Gong, C. Image reconstruction method for incomplete CT projection based on self-guided image filtering. Med Biol Eng Comput (2024). https://doi.org/10.1007/s11517-024-03044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11517-024-03044-9

Keywords

Navigation