Skip to main content

Advertisement

Log in

The Calcineurin Inhibitor Ascomicin Interferes with the Early Stage of the Epileptogenic Process Induced by Latrunculin A Microperfusion in Rat Hippocampus

  • Original Article
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Latrunculin A microperfusion in rat hippocampus has shown to be an effective model of acute and chronic seizures for neurochemical studies. The intervention over early synaptic plasticity changes after the epileptogenesis onset represents a big challenge on the design of a suitable therapy to impair the epilepsy development. We previously suggested that receptor location might be essential for controlling neuronal excitability, and that disruption of local cytoskeletal dynamics followed by drastic changes in the synaptic/extrasynaptic ratio of NMDA, AMPA receptors and their subsequent downstream signalling may play an important role in the pathogenesis of seizures. In the present study, we performed a pharmacological intervention in the Latrunculin model by using Ascomicin (ASC) and Phenytoin (PHT). We pointed out the inhibitory action of ASC over the protein phosphatase 2B (PP2B). PP2B pathological mechanism involves changes in actin cytoskeleton and showed to avoid those subsequent changes previously observed in PSD components. On the contrary, PHT didn’t seem to modify the F-actin depolymerization process induced, showing a similar redistribution pattern from the PSD towards the extrasynaptic site of several molecular components with more or less dependence on actin for their location, including glutamate receptors. Overall, we propose that the early intervention over changes on the synapse during the epileptogenic process might represent the best approach to avoid the onset of chronic refractory seizures our model. On this regard, the therapeutic potential of ASC, FK506 and derivatives should be further explored as a possible tool in the intervention over epilepsy and other brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20:4545–4554

    PubMed  CAS  Google Scholar 

  • Alvarez V, Januel JM, Burnand B, Rossetti AO (2011) Second-line status epilepticus treatment: comparison of phenytoin, valproate, and levetiracetam. Epilepsia 52(7):1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Amico C, Cupello A, Fossati C, Robello M (1998) Involvement of phosphatase activities in the run-down of GABAA receptor function in rat cerebellar granule cells in culture. Neuroscience 84:529–535

    Article  PubMed  CAS  Google Scholar 

  • Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, von Zastrow M et al (2000) Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Beck H (2007) Plasticity of antiepileptic drug targets. Epilepsia 48(Suppl 1):14–18

    Article  PubMed  CAS  Google Scholar 

  • Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde BW (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  • Braet F, Soon L, Vekemans K, Thordarson P, Spector I (2008) Actin-binding drugs: An elegant tool to dissect subcellular processes in endothelial and cancer cells. In: dos Remedios C, Chhabra D (eds) Actin-binding proteins and disease. Springer, New York, pp 37–49

    Chapter  Google Scholar 

  • Chen QX, Wong RKS (1995) Suppression of GABAA receptor responses by NMDA application in hippocampal neurons acutely isolated from the adult guineapig. J Physiol 482:353–362

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chwiej J, Janeczko K (2010) Neuroprotective action of FK-506 (tacrolimus) after seizures induced with pilocarpine: quantitative and topographic elemental analysis of brain tissue. J Biol Inorg Chem 15:283–289

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Taylor D (1972) Isolation and structural studies on synaptic complexes from rat brain. J Cell Biol 55:696–711

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Lanerolle NC, Eid T, von Campe G, Kovacs I, Spencer DD, Brines M (1998) Glutamate receptor subunits GluR1 and GluR2/3 distribution shows reorganization in the human epileptogenic hippocampus. Eur J Neurosci 10:1687–1703

    Article  PubMed  Google Scholar 

  • Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    Article  PubMed  CAS  Google Scholar 

  • Dosemeci A, Tao-Cheng J, Vinade L (2006) Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem Biophys Res Commun 339:687–694

    Article  PubMed  CAS  Google Scholar 

  • Dumont FJ, Koprak S, Staruch MJ (1998) A tacrolimus-related immunosuppressant with reduced toxicity. Transplantation 65(1):18–26

    Article  PubMed  CAS  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854

    Article  PubMed  CAS  Google Scholar 

  • Frasca A, Aalbers M, Frigerio F (2011) Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiol Dis 43(2):507–515

    Article  PubMed  CAS  Google Scholar 

  • Freire-Cobo C, Sierra-Paredes G, Freire M, Sierra-Marcuño G (2014) Changes in NMDA an AMPA receptor subunit composition, location and signaling after seizures induced by local actin disruption in the rat hippocampus. J. Neuroscience. doi:10.1016/j.neuroscience.2014.09.059

  • Gardiner J, Marc J (2010) Disruption of normal cytoskeletal dynamics may play a key role in the pathogenesis of epilepsy. Neuroscientist 16(1):28–39

    Article  PubMed  Google Scholar 

  • Ghasemi M, Steven C, Schachter B (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy & Behav 22:617–640

    Article  Google Scholar 

  • Goto S, Yamamoto H, Fukunaga K. (1985) Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J Neurochem 45:276–283

  • Groth RD, Dunbar RL, Mermelstein PG (2003) Calcineurin regulation of neuronal plasticity. Biochem Biophys Res Commun 311:1159–1171

  • Hajos F (1975) An improved method for the preparation of synaptosomal fractions in high purity. Brain Res 93(3):485–489

    Article  PubMed  CAS  Google Scholar 

  • Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18:9835–9844

    PubMed  CAS  Google Scholar 

  • Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37(6):1147–1160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harris AZ, Pettit DL (2007) Extrasynaptic and synaptic NMDARs form stable and uniform pools in hippocampal slices. J Physiol 584:509–519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hellier JL, White A, Williams PA, Edward Dudek F, Staley KJ (2009) NMDA receptor-mediated long-term alterations in epileptiform activity in experimental chronic epilepsy. Neuropharmacology 56(2):414–421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang R, Dillon GH (1998) Maintenance of recombinant type A γ-aminobutyric acid receptor function: role of tyrosine phosphatases and calcineurin. J Pharmacol Exp Ther 286:243–255

    PubMed  CAS  Google Scholar 

  • Klettner A, Herdegen T (2003) FK506 and its analogs - therapeutic potential for neurological disorders. Curr Drug Targets CNS Neurol Disord 2(3):153–162

    Article  PubMed  CAS  Google Scholar 

  • Kurz JE, Sheets D, Travis-Parsons J, Rana A, DeLorenzo RJ, Churn SBA (2001) Significant increase in both basal and maximal calcineurin activity in the rat pilocarpine model of status epilepticus. J Neurochem 78:304–315

    Article  PubMed  CAS  Google Scholar 

  • Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    Article  PubMed  CAS  Google Scholar 

  • Li X, Serwanski DR, Miralles CP, Bahr BA, De Blas AL (2007) Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. J Neurochem 102(4):1329–1345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin JW, Ju W, Foster K, Lee SH, Ahmadian G, Wyszynski M, Wang YT, Sheng M (2000) Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Lu YM, Mansuy IM, Kandel ER, Roder J (2000) Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26:197–205

    Article  PubMed  CAS  Google Scholar 

  • Matus A (2005) Growth of dendritic spines: a continuing story. Curr Opp Neurobiol 15:67–72

    Article  CAS  Google Scholar 

  • Meadows RP, Nettesheim DG, Xu RX, Olejniczak ET, Petros AM, Holzman TF et al (1993) Three-dimensional structure of the FK506 binding protein/ascomycin complex in solution by heteronuclear three- and four-dimensional NMR. Biochemistry 32(3):754–765

    Article  PubMed  CAS  Google Scholar 

  • Moia L, Matsui H, de Barrose GAM, Tomizawa K, Miyamoto K, Kuwata Y et al (1994) Immunosupressants and calcineurin inhibitors cyclosporin A and FK506, reversibly inhibit epileptogenesis in amigdaloid kindled rat. Brain Res 648:337–341

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550

    Article  PubMed  CAS  Google Scholar 

  • Norris CM, Kadish I, Blalock EM (2005) Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci 25(18):4649–4658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oreiro-García MT, Vázquez-Illanes MD, Sierra-Paredes G, Sierra-Marcuño G (2007) Changes in extracellular amino acid concentrations in the rat hippocampus after in vivo actin depolymerization with latrunculin A. Neurochem Int 50:734–740

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. London Academic Press, London

    Google Scholar 

  • Pitkanen A (2010) Therapeutic approaches to epileptogenesis: hope on the horizon. Epilepsia 51(3):2–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pitre A, Pan J, Skalli O (2007) On the use of ratio standard curve to accurately quantitate relative changes in protein levels by western blotting. Anal Biochem 361(2):305–307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5(7):380–391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Riedel G (1999) If phosphatases go up, memory goes down. Cell Mol Life Sci 55:549–553

  • Sanchez RM, Dai W, Levada RE, Lippman JL, Jensen E (2005) AMPA/Kainate receptor mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain. J Neurosci 25:3442–3451

  • Sattler R, Xiong Z, Lu WY, MacDonald JF, Tymianski M (2000) Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci 20:22–33

    PubMed  CAS  Google Scholar 

  • Scharfman HE (2002) Epilepsy as an example of neural plasticity. Neuroscientist 8(2):154–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharkey J, Jones PA, McCarter JF, Kelly JS (2000) Calcineurin inhibitors as neuroprotectants: focus of tacrolimus and ciclosporin. CNS Drugs 13:1–13

    Article  CAS  Google Scholar 

  • Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Townsend M, Constantine-Paton M (2000) Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron 28:103–114

    Article  PubMed  CAS  Google Scholar 

  • Sierra-Paredes G, Sierra-Marcuño G (1996) Microperfusion of picrotoxin in the hippocampus of freely moving rats through microdialysis probes: a new method of inducing partial and secondary generalized seizures. J Neurosci Methods 67:113–120

  • Sierra-Paredes G, Oreiro-García MT, Núñez-Rodríguez A, Vázquez-López A, Sierra-Marcuño G (2006) Seizures induced by in vivo latrunculin A and jasplakinolide microperfusion in the rat hippocampus. J Mol Neurosci 28(2):151–160

    Article  PubMed  CAS  Google Scholar 

  • Sierra-Paredes G, Sierra-Marcuño G (2007) Extrasynaptic GABA and glutamate receptors in epilepsy. CNS Neurol Disord Drug Targets 6(4):288–300

    Article  PubMed  CAS  Google Scholar 

  • Sierra-Paredes G, Sierra-Marcuno G (2008) Ascomycin and FK506: pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci Ther 14(1):36–46

    Article  PubMed  CAS  Google Scholar 

  • Springer JE, Azbill RD, Nottingham SA, Kennedy SE (2000) Calcineurin-mediated BAD dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J Neurosci 20:7246–7251

    PubMed  CAS  Google Scholar 

  • Suzuki K, Omura S, Ohashi Y, Kawai M, Iwata Y, Tani K et al (2001) FK506 facilitates chemical kindling induced by pentylenetetrazole in rats. Epilepsy Res 46:279–282

    Article  PubMed  CAS  Google Scholar 

  • Svitkina T, Lin WH, Webb DJ, Yasuda R, Wayman GA, Van Aelst L et al (2010) Regulation of the postsynaptic cytoskeleton: roles in development, plasticity, and disorders. J Neurosci 30(45):14937–14942

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tian GF, Azmi H, Takano T (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tong G, Shepherd D, Jahr CE (1995) Synaptic desensitization of NMDA receptors by calcineurin. Science 267:1510–1512

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Lopez A, Sierra-Paredes G, Sierra-Marcuno G (2006) Anticonvulsant effect of the calcineurin inhibitor ascomycin on seizures induced by picrotoxin microperfusion in the rat hippocampus. Pharmacol Biochem Behav 84(3):511–516

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Bartfai T, Bianchi M (2011) Therapeutic potential of new antiinflammatory drugs. Epilepsia 52(8):67–69

    Article  PubMed  CAS  Google Scholar 

  • Wong M (2008) Stabilizing dendritic structure as a novel therapeutic approach for epilepsy. Expert Rev Neurother 8(6):907–915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulate glutamate uptake activity. J Neurosci 24:6301–6306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant XUGA PGIDT00PXI20807PR and XUGA PGIDIT03PXIB20803PR from the Consellería de Educación e Ordenación Universitaria, Xunta de Galicia, Spain.

Thanks Dr. Sierra Marcuño for the dedication of your life to science. You have left valuable contributions in your laboratory works, medical practice and education during your whole lifetime, your memory will always live with us in our daily work.

Disclosure

The authors have no conflict of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Freire-Cobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire-Cobo, C., Sierra-Paredes, G., Freire, M. et al. The Calcineurin Inhibitor Ascomicin Interferes with the Early Stage of the Epileptogenic Process Induced by Latrunculin A Microperfusion in Rat Hippocampus. J Neuroimmune Pharmacol 9, 654–667 (2014). https://doi.org/10.1007/s11481-014-9558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9558-9

Keywords

Navigation