Skip to main content
Log in

The Role of IL-1β in Nicotine-Induced Immunosuppression and Neuroimmune Communication

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Although a number of inflammatory cytokines are increased during sepsis, the clinical trials aimed at down-regulating these mediators have not improved the outcome. These paradoxical results are attributed to loss of the “tolerance” phase that normally follows the proinflammatory response. Chronic nicotine (NT) suppresses both adaptive and innate immune responses, and the effects are partly mediated by the nicotinic acetylcholine receptors in the brain; however, the mechanism of neuroimmune communication is not clear. Here, we present evidence that, in rats and mice, NT initially increases IL-1β in the brain, but the expression is downregulated within 1–2 week of chronic exposure, and the animals become resistant to proinflammatory/pyrogenic stimuli. To examine the relationship between NT, IL-1β, and immunosuppression, we hypothesized that NT induces IL-1β in the brain, and its constant presence produces immunological “tolerance”. Indeed, unlike wild-type C57BL/6 mice, chronic NT failed to induce immunosuppression or downregulation of IL-1β expression in IL-1β-receptor knockout mice. Moreover, while acute intracerebroventricular administration of IL-1β in Lewis (LEW) rats activated Fyn and protein tyrosine kinase activities in the spleen, chronic administration of low levels of IL-1β progressively diminished the pyrogenic and T cell proliferative responses of treated animals. Thus, IL-1β may play a critical role in the perception of inflammation by the CNS and the induction of an immunologic “tolerant” state. Moreover, the immunosuppressive effects of NT might be at least partly mediated through its effects on the brain IL-1β. This represents a novel mechanism for neuroimmune communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

[Ca2+]i :

intercellular calcium concentration

NT:

nicotine

PTK:

protein tyrosine kinase

HPA:

hypothalamus-pituitary-adrenal

LEW:

Lewis

KO:

knockout

WT:

wild-type

ICV:

intracerebroventricular

aCSF:

artificial cerebrospinal fluid

AFC:

antibody-forming cell

qPCR:

real-time PCR

CORT:

corticosterone

References

  • Badjatia N (2009) Hyperthermia and fever control in brain injury. Crit Care Med 37:S250–257

    Article  PubMed  Google Scholar 

  • Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15:504–511

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Esch FS, Taylor SS, Hunter T (1984) Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J Biol Chem 259:7835–7841

    PubMed  CAS  Google Scholar 

  • del Rey A, Besedovsky HO (2000) The cytokine-HPA axis circuit contributes to prevent or moderate autoimmune processes. Z Rheumatol 59(Suppl 2):II/31–35

    Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Savage SM, Razani-Boroujerdi S, Sopori ML (1996) Effects of nicotine on the immune response. II. Chronic nicotine treatment induces T cell anergy. J Immunol 156:2384–2390

    PubMed  CAS  Google Scholar 

  • Geng Y, Savage SM, Johnson LJ, Seagrave J, Sopori ML (1995) Effects of nicotine on the immune response. I. Chronic exposure to nicotine impairs antigen receptor-mediated signal transduction in lymphocytes. Toxicol Appl Pharmacol 135:268–278

    Article  PubMed  CAS  Google Scholar 

  • Gould KL, Hunter T (1988) Platelet-derived growth factor induces multisite phosphorylation of pp 60c-src and increases its protein-tyrosine kinase activity. Mol Cell Biol 8:3345–3356

    PubMed  CAS  Google Scholar 

  • Holt PG, Keast D (1977) Environmentally induced changes in immunological function: acute and chronic effects of inhalation of tobacco smoke and other atmospheric contaminants in man and experimental animals. Bacteriol Rev 41:205–216

    PubMed  CAS  Google Scholar 

  • Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, Nishihara M, Takahashi M, Iwakura Y (1998) Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion. J Exp Med 187:1463–1475

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Wang H, Yan W, Zhu L, Hu Z, Ding Y, Tang K (2009) Role of Nrf2 in protection against traumatic brain injury in mice. J Neurotrauma 26:131–139

    Article  PubMed  Google Scholar 

  • Kalra R, Singh SP, Savage SM, Finch GL, Sopori ML (2000) Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca(2+) stores. J Pharmacol Exp Ther 293:166–171

    PubMed  CAS  Google Scholar 

  • Kalra R, Singh SP, Pena-Philippides JC, Langley RJ, Razani-Boroujerdi S, Sopori ML (2004) Immunosuppressive and anti-inflammatory effects of nicotine administered by patch in an animal model. Clin Diagn Lab Immunol 11:563–568

    PubMed  CAS  Google Scholar 

  • Kox WJ, Volk T, Kox SN, Volk HD (2000) Immunomodulatory therapies in sepsis. Intensive Care Med 26(Suppl 1):S124–128

    Article  PubMed  Google Scholar 

  • Kozak W, Kluger MJ, Soszynski D, Conn CA, Rudolph K, Leon LR, Zheng H (1998) IL-6 and IL-1 beta in fever. Studies using cytokine-deficient (knockout) mice. Ann N Y Acad Sci 856:33–47

    Article  PubMed  CAS  Google Scholar 

  • Lebeis SL, Powell KR, Merlin D, Sherman MA, Kalman D (2009) Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 77:604–614

    Article  PubMed  CAS  Google Scholar 

  • Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38:1336–1345

    Article  PubMed  Google Scholar 

  • Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S (2009) Systemic inflammatory response following acute traumatic brain injury. Front Biosci 14:3795–3813

    Article  PubMed  CAS  Google Scholar 

  • Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, Pena-Philippides JC, Koga T, Razani-Boroujerdi S, Hutt J, Campen M, Kim KC, Tesfaigzi Y, Sopori ML (2008) Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J Immunol 180:7655–7663

    PubMed  CAS  Google Scholar 

  • Neta R, Oppenheim JJ, Douches SD (1988) Interdependence of the radioprotective effects of human recombinant interleukin 1 alpha, tumor necrosis factor alpha, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol 140:108–111

    PubMed  CAS  Google Scholar 

  • Parker LC, Luheshi GN, Rothwell NJ, Pinteaux E (2002) IL-1 beta signalling in glial cells in wildtype and IL-1RI deficient mice. Br J Pharmacol 136:312–320

    Article  PubMed  CAS  Google Scholar 

  • Pinteaux E, Trotter P, Simi A (2009) Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 45:1–7

    Article  PubMed  CAS  Google Scholar 

  • Razani-Boroujerdi S, Sopori ML (2007) Early manifestations of NNK-induced lung cancer: role of lung immunity in tumor susceptibility. Am J Respir Cell Mol Biol 36:13–19

    Article  PubMed  CAS  Google Scholar 

  • Razani-Boroujerdi S, Savage SM, Sopori ML (1994a) Alcohol-induced changes in the immune response: immunological effects of chronic ethanol intake are genetically regulated. Toxicol Appl Pharmacol 127:37–43

    Article  PubMed  CAS  Google Scholar 

  • Razani-Boroujerdi S, Partridge LD, Sopori ML (1994b) Intracellular calcium signaling induced by thapsigargin in excitable and inexcitable cells. Cell Calcium 16:467–474

    Article  PubMed  CAS  Google Scholar 

  • Razani-Boroujerdi S, Singh SP, Knall C, Hahn FF, Pena-Philippides JC, Kalra R, Langley RJ, Sopori ML (2004) Chronic nicotine inhibits inflammation and promotes influenza infection. Cell Immunol 230:1–9

    Article  PubMed  CAS  Google Scholar 

  • Razani-Boroujerdi S, Boyd RT, Davila-Garcia MI, Nandi JS, Mishra NC, Singh SP, Pena-Philippides JC, Langley R, Sopori ML (2007) T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. J Immunol 179:2889–2898

    PubMed  CAS  Google Scholar 

  • Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R (2009) T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 228:9–22

    Article  PubMed  CAS  Google Scholar 

  • Scott DA, Martin M (2006) Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases. World J Gastroenterol 12:7451–7459

    PubMed  CAS  Google Scholar 

  • Singh SP, Kalra R, Puttfarcken P, Kozak A, Tesfaigzi J, Sopori ML (2000) Acute and chronic nicotine exposures modulate the immune system through different pathways. Toxicol Appl Pharmacol 164:65–72

    Article  PubMed  CAS  Google Scholar 

  • Skurlova M, Stofkova A, Jurcovicova J (2006) Exogenous IL-1beta induces its own expression, but not that of IL-6 in the hypothalamus and activates HPA axis and prolactin release. Endocr Regul 40:125–128

    PubMed  CAS  Google Scholar 

  • Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev Immunol 2:372–377

    Article  PubMed  CAS  Google Scholar 

  • Sopori ML, Cherian S, Chilukuri R, Shopp GM (1989) Cigarette smoke causes inhibition of the immune response to intratracheally administered antigens. Toxicol Appl Pharmacol 97:489–499

    Article  PubMed  CAS  Google Scholar 

  • Sopori ML, Kozak W, Savage SM, Geng Y, Kluger MJ (1998a) Nicotine-induced modulation of T Cell function. Implications for inflammation and infection. Adv Exp Med Biol 437:279–289

    Article  PubMed  CAS  Google Scholar 

  • Sopori ML, Kozak W, Savage SM, Geng Y, Soszynski D, Kluger MJ, Perryman EK, Snow GE (1998b) Effect of nicotine on the immune system: possible regulation of immune responses by central and peripheral mechanisms. Psychoneuroendocrinology 23:189–204

    Article  PubMed  CAS  Google Scholar 

  • Stampfli MR, Anderson GP (2009) How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 9:377–384

    Article  PubMed  Google Scholar 

  • Stoll G, Jander S, Schroeter M (2002) Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol 513:87–113

    Article  PubMed  CAS  Google Scholar 

  • Torre D, Minoja G, Maraggia D, Chiaranda M, Tambini R, Speranza F, Giola M (1994) Effect of recombinant IL-1 beta and recombinant gamma interferon on septic acute lung injury in mice. Chest 105:1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Ulloa L, Wang P (2007) The neuronal strategy for inflammation. Novartis Found Symp 280:223–233, discussion 233–227

    Article  PubMed  CAS  Google Scholar 

  • Urbaschek R, Urbaschek B (1987) Tumor necrosis factor and interleukin 1 as mediators of endotoxin-induced beneficial effects. Rev Infect Dis 9(Suppl 5):S607–615

    Article  PubMed  CAS  Google Scholar 

  • van Westerloo DJ, Giebelen IA, Florquin S, Daalhuisen J, Bruno MJ, de Vos AF, Tracey KJ, van der Poll T (2005) The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis 191:2138–2148

    Article  PubMed  Google Scholar 

  • Varma TK, Durham M, Murphey ED, Cui W, Huang Z, Lin CY, Toliver-Kinsky T, Sherwood ER (2005) Endotoxin priming improves clearance of Pseudomonas aeruginosa in wild-type and interleukin-10 knockout mice. Infect Immun 73:7340–7347

    Article  PubMed  CAS  Google Scholar 

  • Wang RD, Tai H, Xie C, Wang X, Wright JL, Churg A (2003) Cigarette smoke produces airway wall remodeling in rat tracheal explants. Am J Respir Crit Care Med 168:1232–1236

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Steve Randock and Ms. Paula Bradley for their help with graphics and editing, respectively.

Disclosures

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan L. Sopori.

Additional information

This work was supported in part by grants from the US Army Medical Research and Material Command (GW093005), the National Institutes of Health (RO1 DA017003), and the Defense Threat Reduction Agency (HDTRA 1-08-C-002)

S. Razani-Boroujerdi and R. Langley contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razani-Boroujerdi, S., Langley, R.J., Singh, S.P. et al. The Role of IL-1β in Nicotine-Induced Immunosuppression and Neuroimmune Communication. J Neuroimmune Pharmacol 6, 585–596 (2011). https://doi.org/10.1007/s11481-011-9284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9284-5

Keywords

Navigation