Skip to main content

Advertisement

Log in

The Methamphetamine-Associated Psychosis Spectrum: a Clinically Focused Review

  • Original Article
  • Published:
International Journal of Mental Health and Addiction Aims and scope Submit manuscript

Abstract

Methamphetamine use is a global concern, and methamphetamine-associated psychosis (MAP) is a particular harm resulting from regular use of the drug that causes significant distress and burden on health and social services. This paper aims to provide a clinically focussed and up-to-date overview of the prevalence, risk factors, and clinical and cognitive features of MAP. The prevalence of MAP ranges between 15 and 30% in recreational settings and up to 60% in some inpatient treatment settings, with up to a third of people with MAP later diagnosed with persistent psychotic disorders. The frequency of methamphetamine use and severity of dependence are the most consistent risk factors for MAP, but other predictors such as genetic vulnerability, a family history of psychotic illness, or trauma also play a role. People with MAP can vary in their presentation, from brief delusional experiences, to persistent psychosis characterised by first-rank symptoms and cognitive impairment. Contemporary conceptualisations of MAP need to incorporate this spectrum of clinical presentations in order to inform clinical decision-making, service provision, and research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alderson, H., Semple, D., Blayney, C., Queirazza, F., Chekuri, V., & Lawrie, S. (2017). Risk of transition to schizophrenia following first admission with substance-induced psychotic disorder: a population-based longitudinal cohort study. Psychological Medicine, 1–8.

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub.

  • Angrist, B. M., & Gershon, S. (1970). The phenomenology of experimentally induced amphetamine psychosis: preliminary observations. Biological Psychiatry.

  • Arunogiri, S., Foulds, J. A., McKetin, R., & Lubman, D. I. (2018). A systematic review of risk factors for methamphetamine-associated psychosis. Australian & New Zealand Journal of Psychiatry, 0004867417748750.

  • Ashok, A. H., Mizuno, Y., Volkow, N. D., & Howes, O. D. (2017). Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiatry, 74(5), 511–519.

    PubMed  PubMed Central  Google Scholar 

  • Bell, D. (1965). Comparison of amphetamine psychosis and schizophrenia. The British Journal of Psychiatry, 111(477), 701–707.

    CAS  PubMed  Google Scholar 

  • Bell, D. S. (1973). The experimental reproduction of amphetamine psychosis. Archives of General Psychiatry, 29(1), 35–40.

    CAS  PubMed  Google Scholar 

  • Bouchard, V., Lecomte, T., & Mueser, K. T. (2013). Could cognitive deficits help distinguish methamphetamine-induced psychosis from a psychotic disorder with substance abuse? Mental Health and Substance Use, 6(2), 101–110.

    Google Scholar 

  • Bousman, C. A., McKetin, R., Burns, R., Woods, S. P., Morgan, E. E., Atkinson, J. H., Grant, I. (2014). Typologies of positive psychotic symptoms in methamphetamine dependence. The American Journal on Addictions.

  • Bramness, J. G., & Rognli, E. B. (2016). Psychosis induced by amphetamines. Current Opinion in Psychiatry, 29(4), 236–241.

    PubMed  Google Scholar 

  • Breen, M., Uhlmann, A., Nday, C., Glatt, S., Mitt, M., Metsalpu, A., et al. (2016). Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Translational Psychiatry, 6(5), e802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callaghan, R. C., Cunningham, J. K., Allebeck, P., Arenovich, T., Sajeev, G., Remington, G., & Kish, S. J. (2012). Methamphetamine use and schizophrenia: a population-based cohort study in California. American Journal of Psychiatry, 169(4), 389–396.

    Google Scholar 

  • Chen, C. K., Lin, S. K., Sham, P. C., Ball, D., Loh el, W., & Murray, R. M. (2005). Morbid risk for psychiatric disorder among the relatives of methamphetamine users with and without psychosis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 136B(1), 87–91.

    Google Scholar 

  • Chen, C.-K., Lin, S.-K., Chen, Y.-C., Huang, M.-C., Chen, T.-T., Ree, S. C., & Wang, L.-J. (2015). Persistence of psychotic symptoms as an indicator of cognitive impairment in methamphetamine users. Drug and Alcohol Dependence, 148, 158–164.

    PubMed  Google Scholar 

  • Curran, C., Byrappa, N., & Mcbride, A. (2004). Stimulant psychosis: systematic review. British Journal of Psychiatry, 185(3), 196–204.

    Google Scholar 

  • Dean, A. C., Groman, S. M., Morales, A. M., & London, E. D. (2013). An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 38(2), 259–274.

    CAS  PubMed  Google Scholar 

  • Ding, Y., Lin, H., Zhou, L., Yan, H., & He, N. (2014). Adverse childhood experiences and interaction with methamphetamine use frequency in the risk of methamphetamine-associated psychosis. Drug and Alcohol Dependence, 142, 295–300.

    CAS  PubMed  Google Scholar 

  • Ezzatpanah, Z., Shariat, S. V., & Tehrani-Doost, M. (2014). Cognitive functions in methamphetamine induced psychosis compared to schizophrenia and normal subjects. Iranian journal of psychiatry, 9(3), 152–157.

    PubMed  PubMed Central  Google Scholar 

  • Garety, P. A., Bebbington, P., Fowler, D., Freeman, D., & Kuipers, E. (2007). Implications for neurobiological research of cognitive models of psychosis: a theoretical paper. Psychological Medicine, 37(10), 1377–1391.

    PubMed  Google Scholar 

  • Gowin, J. L., Stewart, J. L., May, A. C., Ball, T. M., Wittmann, M., Tapert, S. F., & Paulus, M. P. (2014). Altered cingulate and insular cortex activation during risk-taking in methamphetamine dependence: losses lose impact. Addiction, 109(2), 237–247.

    PubMed  Google Scholar 

  • Grant, K. M., LeVan, T. D., Wells, S. M., Li, M., Stoltenberg, S. F., Gendelman, H. E., & Bevins, R. A. (2012). Methamphetamine-associated psychosis. Journal of Neuroimmune Pharmacology, 7(1), 113–139.

    PubMed  Google Scholar 

  • Hides, L., Dawe, S., McKetin, R., Kavanagh, D. J., Young, R. M., Teesson, M., & Saunders, J. B. (2015). Primary and substance-induced psychotic disorders in methamphetamine users. Psychiatry Research, 226(1), 91–96.

    CAS  PubMed  Google Scholar 

  • Howes, O., McCutcheon, R., & Stone, J. (2015). Glutamate and dopamine in schizophrenia: an update for the 21st century. Journal of Psychopharmacology, 29(2), 97–115.

    PubMed  Google Scholar 

  • Jacobs, E., Fujii, D., Schiffman, J., & Bello, I. (2008). An exploratory analysis of neurocognition in methamphetamine-induced psychotic disorder and paranoid schizophrenia. Cognitive and Behavioral Neurology, 21(2), 98–103.

    PubMed  Google Scholar 

  • Janowsky, D. S., & Risch, C. (1979). Amphetamine psychosis and psychotic symptoms. Psychopharmacology, 65(1), 73–77.

    CAS  PubMed  Google Scholar 

  • Kishimoto, M., Ujike, H., Motohashi, Y., Tanaka, Y., Okahisa, Y., Kotaka, T., & Komiyama, T. (2008). The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biological Psychiatry, 63(2), 191–196.

    CAS  PubMed  Google Scholar 

  • Kittirattanapaiboon, P., Mahatnirunkul, S., Booncharoen, H., Thummawomg, P., Dumrongchai, U., & Chutha, W. (2010). Long-term outcomes in methamphetamine psychosis patients after first hospitalisation. Drug and Alcohol Review, 29(4), 456–461.

    PubMed  Google Scholar 

  • Mathias, S., Lubman, D. I., & Hides, L. (2008). Substance-induced psychosis: a diagnostic conundrum. Journal of Clinical Psychiatry, 69(3), 358–367.

    Google Scholar 

  • McKetin, R. (2018). Methamphetamine psychosis: insights from the past. Addiction.

  • McKetin, R., McLaren, J., Lubman, D. I., & Hides, L. (2006). The prevalence of psychotic symptoms among methamphetamine users. Addiction, 101(10), 1473–1478.

    PubMed  Google Scholar 

  • McKetin, R., Hickey, K., Devlin, K., & Lawrence, K. (2010). The risk of psychotic symptoms associated with recreational methamphetamine use. Drug and Alcohol Review, 29(4), 358–363.

    PubMed  Google Scholar 

  • McKetin, R., Lubman, D. I., Lee, N. M., Ross, J. E., & Slade, T. N. (2011). Major depression among methamphetamine users entering drug treatment programs. Medical Journal of Australia, 195(3), S51–S55.

    Google Scholar 

  • McKetin, R., Lubman, D. I., Baker, A. L., Dawe, S., & Ali, R. L. (2013). Dose-related psychotic symptoms in chronic methamphetamine users: evidence from a prospective longitudinal study. JAMA Psychiatry, 70(3), 319–324.

    PubMed  Google Scholar 

  • McKetin, R., Dawe, S., Burns, R. A., Hides, L., Kavanagh, D. J., Teesson, M., & Saunders, J. B. (2016a). The profile of psychiatric symptoms exacerbated by methamphetamine use. Drug and Alcohol Dependence, 161, 104–109.

    CAS  PubMed  Google Scholar 

  • McKetin, R., Gardner, J., Baker, A. L., Dawe, S., Ali, R., Voce, A., & Lubman, D. I. (2016b). Correlates of transient versus persistent psychotic symptoms among dependent methamphetamine users. Psychiatry Research, 238, 166–171.

    PubMed  Google Scholar 

  • McKetin, R., Baker, A. L., Dawe, S., Voce, A., & Lubman, D. I. (2017a). Differences in the symptom profile of methamphetamine-related psychosis and primary psychotic disorders. Psychiatry Research, 251, 349–354.

    PubMed  Google Scholar 

  • McKetin, R., Degenhardt, L., Shanahan, M., Baker, A. L., Lee, N. K., & Lubman, D. I. (2017b). Health service utilisation attributable to methamphetamine use in Australia: patterns, predictors and national impact. Drug and Alcohol Review.

  • Medhus, S., Rognli, E. B., Gossop, M., Holm, B., Mørland, J., & Bramness, J. G. (2015). Amphetamine-induced psychosis: transition to schizophrenia and mortality in a small prospective sample. The American Journal on Addictions, 24(7), 586–589.

    PubMed  Google Scholar 

  • Niemi-Pynttäri, J. A., Sund, R., Putkonen, H., Vorma, H., Wahlbeck, K., & Pirkola, S. P. (2013). Substance-induced psychoses converting into schizophrenia: a register-based study of 18,478 Finnish inpatient cases. Journal of Clinical Psychiatry, 74(1), 94–99.

    Google Scholar 

  • van Os, J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468(7321), 203–212.

    PubMed  Google Scholar 

  • Panenka, W. J., Procyshyn, R. M., Lecomte, T., MacEwan, G. W., Flynn, S. W., Honer, W. G., & Barr, A. M. (2013). Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug and Alcohol Dependence, 129(3), 167–179.

    CAS  PubMed  Google Scholar 

  • Papaleo, F., Yang, F., Garcia, S., Chen, J., Lu, B., Crawley, J., & Weinberger, D. (2012). Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Molecular Psychiatry, 17(1), 85–98.

    CAS  PubMed  Google Scholar 

  • Paparelli, A., Di Forti, M., Morrison, P. D., & Murray, R. M. (2011). Drug-induced psychosis: how to avoid star gazing in schizophrenia research by looking at more obvious sources of light. Frontiers in Behavioral Neuroscience, 5.

  • Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62(7), 761–768.

    PubMed  Google Scholar 

  • Rognli, E. B., & Bramness, J. G. (2015). Understanding the relationship between amphetamines and psychosis. Current Addiction Reports, 2(4), 285–292.

    Google Scholar 

  • Ross, R. G. (2006). Psychotic and manic-like symptoms during stimulant treatment of attention deficit hyperactivity disorder. American Journal of Psychiatry, 163(7), 1149–1152.

    Google Scholar 

  • Sato, M., Numachi, Y., & Hamamura, T. (1992). Relapse of paranoid psychotic state in methamphetamine model of schizophrenia. Schizophrenia Bulletin, 18(1), 115–122.

    CAS  PubMed  Google Scholar 

  • Scott, J. C., Woods, S. P., Matt, G. E., Meyer, R. A., Heaton, R. K., Atkinson, J. H., & Grant, I. (2007). Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychology Review, 17(3), 275–297.

    PubMed  Google Scholar 

  • Scott, N., Caulkins, J. P., Ritter, A., Quinn, C., & Dietze, P. (2015). High-frequency drug purity and price series as tools for explaining drug trends and harms in Victoria, Australia. Addiction, 110(1), 120–128.

    PubMed  Google Scholar 

  • Sekine, Y., Iyo, M., Ouchi, Y., Matsunaga, T., Tsukada, H., Okada, H., & Mori, N. (2001). Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. American Journal of Psychiatry, 158(8), 1206–1214.

    CAS  Google Scholar 

  • Sekine, Y., Minabe, Y., Ouchi, Y., Takei, N., Iyo, M., Nakamura, K., & Yoshikawa, E. (2003). Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. American Journal of Psychiatry, 160(9), 1699–1701.

    Google Scholar 

  • Shelly, J., Uhlmann, A., Sinclair, H., Howells, F. M., Sibeko, G., Wilson, D., & Temmingh, H. (2016). First-rank symptoms in methamphetamine psychosis and schizophrenia. Psychopathology, 49(6), 429–435.

    PubMed  Google Scholar 

  • Smith, M. J., Barch, D. M., & Csernansky, J. G. (2009). Bridging the gap between schizophrenia and psychotic mood disorders: relating neurocognitive deficits to psychopathology. Schizophrenia Research, 107(1), 69–75.

    PubMed  Google Scholar 

  • Srisurapanont, M., Ali, R., Marsden, J., Sunga, A., Wada, K., & Monteiro, M. (2003). Psychotic symptoms in methamphetamine psychotic in-patients. International Journal of Neuropsychopharmacology, 6(4), 347–352.

    Google Scholar 

  • Srisurapanont, M., Arunpongpaisal, S., Wada, K., Marsden, J., Ali, R., & Kongsakon, R. (2011). Comparisons of methamphetamine psychotic and schizophrenic symptoms: a differential item functioning analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(4), 959–964.

    CAS  PubMed  Google Scholar 

  • Starzer, M. S. K., Nordentoft, M., & Hjorthøj, C. (2017). Rates and predictors of conversion to schizophrenia or bipolar disorder following substance-induced psychosis. American Journal of Psychiatry.

  • Sulaiman, A. H., Said, M. A., Habil, M. H., Rashid, R., Siddiq, A., Guan, N. C., & Das, S. (2014). The risk and associated factors of methamphetamine psychosis in methamphetamine-dependent patients in Malaysia. Comprehensive Psychiatry, 55(Suppl 1), S89–S94.

    PubMed  Google Scholar 

  • United Nations Office on Drugs and Crime. (2016). World drug report 2016. Retrieved from

  • Wang, L.-J., Lin, S.-K., Chen, Y.-C., Huang, M.-C., Chen, T.-T., Ree, S.-C., & Chen, C.-K. (2016). Differences in clinical features of methamphetamine users with persistent psychosis and patients with schizophrenia. Psychopathology, 49(2), 108–115.

    PubMed  Google Scholar 

  • Zhang, J.-P., Burdick, K. E., Lencz, T., & Malhotra, A. K. (2010). Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biological Psychiatry, 68(12), 1126–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zweben, J. E., Cohen, J. B., Christian, D., Galloway, G. P., Salinardi, M., Parent, D., & Iguchi, M. (2004). Psychiatric symptoms in methamphetamine users. The American Journal on Addictions, 13(2), 181–190.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Arunogiri.

Ethics declarations

Conflict of Interest

Authors RM and AVG declare that they have no conflict of interest. Author SA was supported by an Australian National Health and Medical Research Council (NHMRC) postgraduate scholarship (Grant No. 1093778). Author DL has provided consultancy advice to Lundbeck and Indivior and has received travel support and speaker honoraria from Astra Zeneca, Bristol Myers Squibb, Janssen, Lundbeck, Servier, and Shire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunogiri, S., McKetin, R., Verdejo-Garcia, A. et al. The Methamphetamine-Associated Psychosis Spectrum: a Clinically Focused Review. Int J Ment Health Addiction 18, 54–65 (2020). https://doi.org/10.1007/s11469-018-9934-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11469-018-9934-4

Keywords

Navigation