Skip to main content
Log in

Surface Plasmon Resonance Sensing at the Interface of Doppler Broadening Dielectric Medium and Graphene

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The sensitivity of the surface plasmon polariton wave (SPPs) is coherently controlled and modified at the interface of four-level Doppler broadening dielectric medium and graphene. The useful control over the sensitivity of the SPPs under the Doppler broadening dielectric medium with system and driving fields parameters is reported. The sensitivity of SPPs is a function of probe and control field detuning, control field Rabi frequency, and decay rates. The high value of sensitivity is reported to 2700 deg/RIU with phase and decay rate, while small value of sensitivity is investigated to 320 deg/RIU with control field detuning. The above results show useful applications in biosensor, data storage, waveguiding, and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data was used in this study.

References

  1. Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9(6):329–340. https://doi.org/10.1038/nphys2615

    Article  CAS  Google Scholar 

  2. Khan Q, Bacha BA, Ahmad I et al (2023) Manipulation of sensitivity of the surface plasmon polariton waves at the interface of high magneto-optical medium and silver metal using angular interrogation. Results Phys 52:106844

    Article  Google Scholar 

  3. Khan N, Bacha BA, Iqbal A, Rahman AU, Afaq A (2017) Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons. Erratum Phys Rev A. https://doi.org/10.1103/PhysRevA.96.013848

    Article  Google Scholar 

  4. Zhang T, Shan F (2014) Development and application of surface plasmon polaritons on optical amplification. Nanomaterials. https://doi.org/10.1155/2014/495381

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater. https://doi.org/10.1038/nmat2162

    Article  PubMed  Google Scholar 

  6. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. https://doi.org/10.1038/nmat2629

    Article  CAS  PubMed  Google Scholar 

  7. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  PubMed  Google Scholar 

  8. Han Z, Bozhevolnyi SI (2013) Radiation guiding with surface plasmon polariton. Rep Prog Phys 76:016402. https://doi.org/10.1088/0034-4885/76/1/016402

    Article  CAS  PubMed  Google Scholar 

  9. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934. https://doi.org/10.1021/nl070610y

    Article  CAS  PubMed  Google Scholar 

  10. Reece PJ (2008) Plasmonics-finer optical tweezers. Nature Publishing Group. https://condmat.physics.manchester.ac.uk/pdf/mesoscopic/news/graphene/ Naturephot. Accessed June 2008

  11. Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356. https://doi.org/10.1038/nphoton.2011.56

    Article  CAS  Google Scholar 

  12. Mecklenburg M, Hubbard WA, White ER, Dhall R, Cronin SB, Aloni S, Regan BC (2015) Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices. Science (New York, N.Y.). https://doi.org/10.1126/science.aaa2433cience

    Article  PubMed  Google Scholar 

  13. Goykhman B, Desiatov JB, Khurgin J, Shappir U (2011) Levy, locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett. https://doi.org/10.1021/nl200187v

    Article  PubMed  Google Scholar 

  14. Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5:571–606

    Article  CAS  Google Scholar 

  15. Rossi S, Gazzola E, Capaldo P, Borile G, Romanato F (2018) Grating-coupled surface plasmon resonance (GC-SPR) optimization for phase-interrogation biosensing in a microfluidic chamber. Sensors 18:1621

    Article  PubMed  PubMed Central  Google Scholar 

  16. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: a review. Sens Actuators B Chem 54:3–15

    Article  CAS  Google Scholar 

  17. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Chem Soc Rev 43:3426. https://doi.org/10.1039/c3cs60479a

    Article  CAS  PubMed  Google Scholar 

  18. Fermi E (1932) Quantum theory of radiations. Rev Mod Phys 4(1):87–132

    Article  CAS  Google Scholar 

  19. Dicke RH (1953) The effect of collisions upon the Doppler width of spectral lines. Phys Rev 89(2):472–473

    Article  CAS  Google Scholar 

  20. Agarwal GS, Dey TN (2003) Slow light in Doppler-broadened two-level systems. Phys Rev A 68(6):063816(1–4)

    Article  Google Scholar 

  21. Fan X, Liu Z, Liang Y, Jia K, Tong D (2011) Phase control of probe response in a Doppler-broadened N-type four-level system. Phys Rev A 83(4):043805(1–10)

    Article  Google Scholar 

  22. Bacha BA, Jabar MSA (2018) The event cloaking from a birefringent medium via Kerr nonlinearity. J Opt 20:095703

    Article  Google Scholar 

  23. Khan L, Bacha BA, Wahid U, Ullah A (2020) Birefringence of rotary photon drags through induced chiral atomic medium Phys. Scr. 95:7

    Google Scholar 

  24. Khan Q, Khan A, Bacha BA et al (2023) Sensitivity of the surface plasmon polariton waves at the interface of metal and dielectric medium using doppler broadening effect. Plasmonics. https://doi.org/10.1007/s11468-023-01978-8

    Article  Google Scholar 

  25. Khan Q, Khan A, Bacha BA et al (2023) Conductivity dependent sensitivity of the surface plasmon polariton waves at the interface of metal and dielectric using wavelength interrogation. Plasmonics. https://doi.org/10.1007/s11468-023-02134-y

    Article  Google Scholar 

  26. Homola J, Yee SS, Myszka D (2008) Opt Biosensors 13:185

    Article  Google Scholar 

  27. Khan Q, Gul Z, Khan M et al (2024) Coherent control of angular interrogation of sensitivity of the surface plasmon polariton waves at the interface of metal and dielectric medium. Plasmonics. https://doi.org/10.1007/s11468-024-02202-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Qaisar Khan did the primary work and performed all the simulation, and Meraj Ali Khan and Asghar Ali review the paper. All authors read the article and helped in improving it.

Corresponding author

Correspondence to Qaisar Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coupled rate equations are given as

$$\begin{aligned} \dot{\tilde{\rho _{13}}}=D_1\tilde{\rho _{13}}+\frac{i}{2}\Omega _1\tilde{\rho _{43}}-\frac{i}{2}\Omega _2\tilde{\rho _{12}}+\frac{i}{2}\Omega _p(\tilde{\rho _{33}}-\tilde{\rho _{11}}) \end{aligned}$$
(18)
$$\begin{aligned} \dot{\tilde{\rho _{43}}}=D_2\tilde{\rho _{43}}+\frac{i}{2}\Omega ^{*}_1\tilde{\rho _{13}}-\frac{i}{2}\Omega _2\tilde{\rho _{42}}-\frac{i}{2}\Omega _p\tilde{\rho _{41}} \end{aligned}$$
(19)
$$\begin{aligned} \dot{\tilde{\rho _{12}}}=D_3\tilde{\rho _{12}}+\frac{i}{2}\Omega _{2}\tilde{\rho _{13}}-\frac{i}{2}\Omega _{1}\tilde{\rho _{42}}-\frac{i}{2}\Omega _{p}\tilde{\rho _{32}} \end{aligned}$$
(20)
$$\begin{aligned} \dot{\tilde{\rho _{42}}}=\frac{i}{2}\Omega ^{*}_{1}\tilde{\rho _{12}}-\Omega ^{*}_{2}\tilde{\rho _{43}}-D_4\tilde{\rho _{42}} \end{aligned}$$
(21)

The parameters \(A_{1-4}\) are written below:

$$\begin{aligned} D_1=i(\Delta _{pd}+kv)-\frac{G_{31}+G_{41}}{2} \end{aligned}$$
(22)
$$\begin{aligned} D_2=i(\Delta _{1}+\eta _{1}kv-\Delta _{pd}-kv) \end{aligned}$$
(23)
$$\begin{aligned} D_3=i(\Delta _{pd}+kv-\Delta _1-\eta _{2}kv)-\frac{G_{32}+G_{42}+G_{31}+G_{41}}{2} \end{aligned}$$
(24)
$$\begin{aligned} D_4=i(\Delta _{pd}+kv-\Delta _1-\eta _{1}kv-\Delta _2-\eta _{2}kv)-\frac{G_{32}+G_{42}}{2} \end{aligned}$$
(25)
$$\begin{aligned} B_1=i(\Delta _{pg}+kv-\Delta _4-\eta _{2}kv-\Delta _3-\eta _{1}kv)+\frac{G_{a}+G_{b}+G_{d}}{2} \end{aligned}$$
(26)
$$\begin{aligned} B_2=i(\Delta _{pg}+kv-\Delta _4-\eta _{2}kv)+\frac{G_{a}+G_{d}}{2} \end{aligned}$$
(27)
$$\begin{aligned} B_3=i(\Delta _{pg}+kv)+\frac{G_{a}+G_{b}+G_{d}}{2} \end{aligned}$$
(28)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Q., Ali Khan, M. & Ali, A. Surface Plasmon Resonance Sensing at the Interface of Doppler Broadening Dielectric Medium and Graphene. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02300-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02300-w

Keywords

Navigation