Skip to main content
Log in

Design and Analysis of Plasmonic Solar Absorber for Visible and Infrared Spectrum

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, a periodic array of square bar-shaped nickel (Ni) metal is presented as a straightforward and cost-effective broadband absorber spanning the visible to mid-infrared spectrum. The proposed square bar-shaped nanoabsorber (SBNA) holds a simple and single-layer design topology, which contains plasmonic metal at the top and bottom side of the middle dielectric spacer. The metallic layers are composed of plasmonic Ni, while a dielectric spacer, aluminum nitride (AlN), is employed. The absorption characteristics of the proposed SBNA are evaluated using the full-wave simulation software CST Studio. The SBNA exhibits a broad absorption bandwidth spanning from 200 to 3500 nm, encompassing the ultraviolet (UV) to the short-infrared spectrum. Moreover, an angular stability analysis of the designed SBNA is conducted by considering both the excitation modes (TE and TM). The absorption properties of the SBNA remain the same under the variation of polarization angle; it is owing to the fourfold symmetric configuration of the absorber. The effective engineering of design parameters, including the length of the square-shaped nano-bar, spacer thickness, and periodicity of the unit cell, significantly influences the absorption window. In conclusion, the designed SBNA holds significant potential for diverse applications such as energy harvesting, optical emission, and thermal photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Groever B, Chen WT, Capasso F (2017) Meta-lens doublet in the visible region. Nano Lett 17(8):4902–4907

    Article  CAS  PubMed  Google Scholar 

  2. Khorasaninejad M et al (2016) Multispectral chiral imaging with a metalens. Nano Lett 16(7):4595–4600

    Article  CAS  PubMed  Google Scholar 

  3. Chau Y-F et al (2013) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J Nanopart Res 15:1–13

    Article  Google Scholar 

  4. Yang W, Lin Y-S (2020) Tunable metamaterial filter for optical communication in the terahertz frequency range. Opt Express 28(12):17620–17629

    Article  PubMed  Google Scholar 

  5. Landy N, Smith DR (2013) A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mater 12(1):25–28

    Article  CAS  PubMed  Google Scholar 

  6. Miscuglio M et al (2021) Approximate analog computing with metatronic circuits. Commun Phys 4(1):196

    Article  Google Scholar 

  7. Naveed MA, Bilal RMH, Baqir MA, Bashir MM, Ali MM, Rahim AA (2021) Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt Express 29(26):42911–42923

    Article  CAS  Google Scholar 

  8. Engheta N, Ziolkowski RW (2006) Metamaterials: physics and engineering explorations. John Wiley & Sons

  9. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48

    Article  CAS  Google Scholar 

  10. Naveed MA et al (2021) Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst Nanoeng 7(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naveed MA et al (2022) Novel spin-decoupling strategy in liquid crystal-integrated metasurfaces for interactive metadisplays. Adv Opt Mater 10(13):2200196

    Article  CAS  Google Scholar 

  12. Alsulami QA, Wageh S, Al-Ghamdi AA, Bilal RMH, Saeed MA (2022) A tunable and wearable dual-band metamaterial absorber based on polyethylene terephthalate (PET) substrate for sensing applications. Polymers 14(21):4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chau Y-F, Yeh H-H, Tsai DP (2010) A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J Electromagn Waves Appl 24(11–12):1621–1632

    Article  Google Scholar 

  14. Bilal R et al (2021) A novel omega shaped microwave absorber with wideband negative refractive index for C-band applications. Optik 242:167278

    Article  CAS  Google Scholar 

  15. He Y, Gao Z, Jia D, Zhang W, Du B, Chen ZN (2017) Dielectric metamaterial-based impedance-matched elements for broadband reflectarray. IEEE Trans Antennas Propag 65(12):7019–7028

    Article  Google Scholar 

  16. Zetterstrom O, Hamarneh R, Quevedo-Teruel O (2021) Experimental validation of a metasurface Luneburg lens antenna implemented with glide-symmetric substrate-integrated holes. IEEE Antennas Wirel Propag Lett 20(5):698–702

    Article  Google Scholar 

  17. Ahmad T et al (2022) Ultrawideband cross-polarization converter using anisotropic reflective metasurface. Electronics 11(3):487

    Article  CAS  Google Scholar 

  18. Costa F, Borgese M (2021) Electromagnetic model of reflective intelligent surfaces. IEEE Open J Commun Soc 2:1577–1589

    Article  Google Scholar 

  19. Chau Y-F, Tsai DP (2007) Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure. Opt Commun 269(2):389–394

    Article  CAS  Google Scholar 

  20. Bilal RMH, Baqir MA, Hameed M, Naqvi SA, Ali MM (2022) Triangular metallic ring-shaped broadband polarization-insensitive and wide-angle metamaterial absorber for visible regime. JOSA A 39(1):136–142

    Article  CAS  PubMed  Google Scholar 

  21. Genovesi S, Costa F, Monorchio A (2012) Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces. IEEE Trans Antennas Propag 60(5):2327–2335

    Article  Google Scholar 

  22. Sabaruddin NR et al (2024) Designing a broadband terahertz metamaterial absorber through bi-layer hybridization of metal and graphene. Plasmonics 1–14

  23. Sabaruddin NR, Tan YM, Chou Chao C-T, Kooh MRR, Chou Chau Y-F (2023) High sensitivity of metasurface-based five-band terahertz absorber. Plasmonics 1–13

  24. Chao C-TC, Kooh MRR, Lim CM, Thotagamuge R, Mahadi AH, Chau Y-FC (2023) Visible-range multiple-channel metal-shell rod-shaped narrowband plasmonic metamaterial absorber for refractive index and temperature sensing. Micromachines 14(2):340

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grant J, Kenney M, Shah YD, Escorcia-Carranza I, Cumming DR (2018) CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications. Opt Express 26(8):10408–10420

    Article  CAS  PubMed  Google Scholar 

  26. Garg P, Jain P (2019) Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band. IEEE Trans Circuits Syst II Express Briefs 67(4):675–679

    Google Scholar 

  27. Tak J, Jeong E, Choi J (2017) Metamaterial absorbers for 24-GHz automotive radar applications. J Electromagn Waves Appl 31(6):577–593

    Article  Google Scholar 

  28. Chou Chao C-T, Chen S-H, Huang HJ, Chou Chau Y-F (2023) Near-and mid-infrared quintuple-band plasmonic metamaterial absorber. Plasmonics 18(4):1581–1591

    Article  CAS  Google Scholar 

  29. Xiong H, Hong J-S, Luo C-M, Zhong L-L (2013) An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys 114(6)

  30. Park JW et al (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21(8):9691–9702

    Article  PubMed  Google Scholar 

  31. Bilal R, Naveed M, Baqir M, Ali M, Rahim A (2020) Design of a wideband terahertz metamaterial absorber based on Pythagorean-tree fractal geometry. Opt Mater Express 10(12):3007–3020

    Article  CAS  Google Scholar 

  32. Bilal RMH, Rahim AA, Maab H, Ali MM (2018) Modified wang shaped ultra-wideband (UWB) fractal patch antenna for millimetre-wave applications. In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). IEEE 280–284

  33. Yang C, Chang H, Xiao L, Qu Y (2022) Visible and NIR transparent broadband microwave absorption metamaterial based on silver nanowires. Opt Mater 131:112464

    Article  CAS  Google Scholar 

  34. Tuan TS, Hoa NTQ (2019) Numerical study of an efficient broadband metamaterial absorber in visible light region. IEEE Photonics J 11(3):1–10

    Article  Google Scholar 

  35. Bilal R et al (2020) Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci Rep 10(1):14035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bilal RMH, Zakir S, Naveed MA, Zubair M, Mehmood MQ, Massoud Y (2023) Nanoengineered nickel-based ultrathin metamaterial absorber for the visible and short-infrared spectrum. Opt Mater Express 13(1):28–40

    Article  CAS  Google Scholar 

  37. Qian Q, Yan Y, Wang C (2018) Flexible metasurface black nickel with stepped nanopillars. Opt Lett 43(6):1231–1234

    Article  CAS  PubMed  Google Scholar 

  38. Zhou Y, Luo M, Shen S, Zhang H, Pu D, Chen L (2018) Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array. Opt Express 26(21):27482–27491

    Article  CAS  PubMed  Google Scholar 

  39. Hakim ML et al (2022) Ultrawideband polarization-independent nanoarchitectonics: a perfect metamaterial absorber for visible and infrared optical window applications. Nanomaterials 12(16):2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mehrabi S, Bilal RMH, Naveed MA, Ali MM (2022) Ultra-broadband nanostructured metamaterial absorber based on stacked square-layers of TiN/TiO 2. Opt Mater Express 12(6):2199–2211

    Article  CAS  Google Scholar 

  41. Sheta E, Choudhury P, Ibrahim A-BM (2022) Polarization-insensitive ultra-wideband metamaterial absorber comprising different forms of ZrN structures at the metasurface. Opt Mater 133:112990

    Article  CAS  Google Scholar 

  42. Wang W et al (2021) Broadband thin-film and metamaterial absorbers using refractory vanadium nitride and their thermal stability. Opt Express 29(21):33456–33466

    Article  CAS  PubMed  Google Scholar 

  43. Bilal RMH et al (2021) Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial. IEEE Access 9:5670–5677

    Article  Google Scholar 

  44. Liu C et al (2019) Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials. J Phys Condens Matter 31(8)

    Article  PubMed  Google Scholar 

  45. Naveed MA, Bilal RMH, Rahim AA, Baqir MA, Ali MM (2021) Polarization-insensitive dual-wideband fractal meta-absorber for terahertz applications. Appl Opt 60(29):9160–9166

    Article  PubMed  Google Scholar 

  46. Vu DQ et al (2018) Broadening the absorption bandwidth of metamaterial absorber by coupling three dipole resonances. Physica B 532:90–94

    Article  CAS  Google Scholar 

  47. Wang B-X (2016) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quantum Electron 23(4):1–7

    Article  Google Scholar 

  48. Mehmood MQ, Shah AR, Naveed MA, Mahmood N, Zubair M, Massoud Y (2023) MXene-based polarization-insensitive UV-VIS-NIR meta-absorber. IEEE Access 11:130287–130295

    Article  Google Scholar 

  49. Hoa NTQ, Lam PH, Tung PD, Tuan TS, Nguyen H (2019) Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics J 11(1):1–8

    Article  Google Scholar 

  50. Luo F, Li C, He X (2023) Ultra-wideband and wide-angle metamaterial absorber for solar energy harvesting from ultraviolet to near infrared. Phys Scr 98(12):125504

    Article  Google Scholar 

  51. Kumar R, Singh BK, Pandey PC (2023) Cone-shaped resonator-based highly efficient broadband metamaterial absorber. Opt Quant Electron 55(7):579

    Article  CAS  Google Scholar 

  52. Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352

    Article  CAS  Google Scholar 

  53. Wu P, Dai S, Zeng X, Su N, Cui L, Yang H (2023) Design of ultra-high absorptivity solar absorber based on Ti and TiN multilayer ring structure. Int J Therm Sci 183:107890

    Article  CAS  Google Scholar 

Download references

Funding

There is no associated funding with this work.

Author information

Authors and Affiliations

Authors

Contributions

Z. Gao is the single author of this article.

Corresponding author

Correspondence to Zhipeng Gao.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z. Design and Analysis of Plasmonic Solar Absorber for Visible and Infrared Spectrum. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02297-2

Keywords

Navigation