Skip to main content
Log in

A Highly Sensitive Structure Based on Prism, Silver, and Titanium Dioxide for Biochemical Sensing Applications

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a refractive index (RI) sensor with prism configuration is proposed and numerically investigated for sensing applications. The sensor design is based on a BK7 prism, silver (Ag), and titanium dioxide (TiO2). Important enhancement in the sensitivity and reflection deep is obtained by optimizing some geometric and optical parameters. The transfer matrix method (TMM) is employed to investigate the reflectance of the sensor at wavelength interrogation. RI sensitivity (SRI), figure of merit (FoM), and quality factor (QF) are three important parameters that are considered to determine the design performance. The SRI, FoM, and QF offered by the nanostructure are 6300 nm/RIU, 52.24 RIU−1, and 11.04, respectively, when the refractive index is varied from 1.33 to 1.41. We have successfully detected various chemical entities in an aqueous solution, such as heavy metals, lactose, ethanol, and sodium chloride (NaCl), using a wavelength interrogation-based SPR biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data generated or analyzed during the current study are included in the published article.

References

  1. Hsiao FL, Lee C (2010) Computational study of photonic crystals nano-ring resonator for biochemical sensing. IEEE Sens J 10(7):1185–1191

    Article  CAS  Google Scholar 

  2. Keiser G, Xiong F, Cui Y, Shum PP (2014) Review of diverse optical fibers used in biomedical research and clinical practice. J Biomed Opt 19(8):080902

    Article  PubMed  Google Scholar 

  3. Karki B, Jha A, Pal A, Srivastava V (2022) Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt Quant Electron 54(9):595

    Article  CAS  Google Scholar 

  4. Kumar A, Kumar A, Srivastava SK (2022) Silicon nitride-BP-based surface plasmon resonance highly sensitive biosensor for virus SARS-CoV-2 detection. Plasmonics 17(3):1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar R, Pal S, Prajapati YK, Kumar S, Saini JP (2022) Sensitivity improvement of a MXene immobilized SPR sensor with Ga doped ZnO for biomolecules detection. IEEE Sens J 24 22(7):6536–6543

    Article  CAS  Google Scholar 

  6. Sassi IA, El Hadj B, Rhouma M, Daher MG (2023) Highly sensitive refractive index gas sensor using two-dimensional silicon carbide grating based on surface plasmon resonance. Opt Quant Electron 55(5):402

    Article  CAS  Google Scholar 

  7. Khilmy NH, Mukhtar WM, Rashid AR (2022) Sensitivity optimization of Au/Ti based-SPR sensor by controlling light incident wavelength for gas sensing application. J Mater Life Sci (JOMALISC) 30:27–36

    Article  Google Scholar 

  8. Sassi I, Mghaieth R (2020) Infrared thermal source or perfect absorber sensor based on silver 2D grating. Appl Phys A 126(9):675

    Article  CAS  Google Scholar 

  9. Sassi I, El Hadj B, Rhouma M (2023) Sensitivity enhancement of SPR sensor assisted by Ag, TiO2 and BP for glucose and hemoglobin detection: numerical analysis. Opt Quant Electron 55(11):959

    Article  CAS  Google Scholar 

  10. Karki B, Uniyal A, Sarkar P, Pal A, Yadav RB (2023) Sensitivity improvement of surface plasmon resonance sensor for glucose detection in urine samples using heterogeneous layers: an analytical perspective. J Opt 16:1–1

    Google Scholar 

  11. Singh S, Singh S, Singh PK, Yadav RK, Lohia P, Dwivedi DK (2023) Theoretical study of malaria detection in blood samples using bimetal layer and zinc telluride nanomaterial-based surface plasmon resonance biosensor. Plasmonics 18(6):2125–2136

    Article  CAS  Google Scholar 

  12. Sharma S, Paliwal A, Bassi M, Tomar M, Gupta V, Gulati S (2021) Investigation of adulteration in milk using surface plasmon resonance. ECS Journal of Solid State Science and Technology 10(9):091004

    Article  CAS  Google Scholar 

  13. Long S, Cao J, Wang Y, Gao S, Xu N, Gao J, Wan W (2020) Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period. Sensors and Actuators Reports 2(1):100016

    Article  Google Scholar 

  14. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  PubMed  Google Scholar 

  15. Yuan X, Wu L, Qin Y (2023) Advancing sensitivity in guided-wave surface plasmon resonance sensor through integration of 2D BlueP/MoS2 hybrid layers. Biosensors 14(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghodrati M, Mir A, Farmani A (2023) Proposing of SPR biosensor based on 2D Ti3C2T x MXene for uric acid detection ımmobilized by uricase enzyme. J Comput Electron 22(1):560–569

    CAS  Google Scholar 

  17. Panda A, Pukhrambam PD, Simatupang JW (2022) Design of a highly sensitive self-reference tamm-plasmon-polariton sensor employing Ti 3 C 2 Tx MXene. IEEE Sens J 22(13):12719–12727

    Article  CAS  Google Scholar 

  18. Kong L, Lv J, Gu Q, Ying Y, Jiang X, Si G (2020) Sensitivity-enhanced SPR sensor based on graphene and subwavelength silver gratings. Nanomaterials 10(11):2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chylek J, Ciprian D, Hlubina P (2024) Optimized film thicknesses for maximum refractive index sensitivity and figure of merit of a bimetallic film surface plasmon resonance sensor. The European Physical Journal Plus 139(1):11

    Article  CAS  Google Scholar 

  20. Sayed FA, Elsayed HA, Al-Dossari M, Eissa MF, Mehaney A, Aly AH (2023) Angular surface plasmon resonance-based sensor with a silver nanocomposite layer for effective water pollution detection. Sci Rep 13(1):21793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mittal S, Saharia A, Ismail Y, Petruccione F, Bourdine AV, Morozov OG, Demidov VV, Yin J, Singh G, Tiwari M, Kumar S (2023) Design and performance analysis of a novel hoop-cut SPR-PCF sensor for high sensitivity and broad range sensing applications. IEEE Sensors Journal.

  22. Ashrafi TM, Mohanty G (2023) Single and bimetal-based surface plasmon resonance sensor using AlN-TMDC heterostructure: a comparison study. Opt Quant Electron 55(1):59

    Article  CAS  Google Scholar 

  23. Kumar P, Kumar R, Singh MK, Ahmed B (2023) Detection of plasma, platelets, hemoglobin in blood sample of dengue malaria based on surface plasmon resonance biosensor using black phosphorus: a numerical analysis. Plasmonics 4:1–2

    Google Scholar 

  24. Karki B, Salah NH, Srivastava G, Muduli A, Yadav RB (2023) A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics 18(6):2031–2040

    Article  CAS  Google Scholar 

  25. Muthumanikkam M, Vibisha A, Lordwin Prabhakar MC, Suresh P, Rajesh KB, Jaroszewicz Z, Jha R (2023) Numerical investigation on high-performance Cu-based surface plasmon resonance sensor for biosensing application. Sensors 23(17):7495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yadav A, Kumar S, Kumar A, Sharan P (2023) Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Frontiers in Materials 9:1106251

    Article  Google Scholar 

  27. Kumar V, Pal S (2023) A Tantalum Disulfide (TaS2) Mediated long-range surface plasmon resonance refractive index sensor with improved performance. Sensing and Imaging 24(1):42

    Article  Google Scholar 

  28. Karki B, Ansari G, Uniyal A, Srivastava V (2023) PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J Comput Electron 22(1):106–115

    CAS  Google Scholar 

  29. Khan GA, Lu Y, Wang P (2023) Plasmon-enhanced refractive index sensing of biomolecules based on metal–dielectric–metal metasurface in the infrared regime. ACS omega.

  30. Karki B, Uniyal A, Srivastava G, Pal A (2023) Black phosphorous and cytop nanofilm-based long-range SPR sensor with enhanced quality factor. J Sens 2023

  31. Zhao L, Wu D, Chen Q (2023) MXene-based Kretschmann configured surface plasmon resonance sensor in visible regime. Plasmonics 1–7

  32. Bodurov I, Vlaeva I, Viraneva A, Yovcheva T, Sainov S (2016) Modified design of a laser refractometer. Nanosci Nanotechnol 16:31–33

    CAS  Google Scholar 

  33. Yamamoto M (2002) Surface plasmon resonance (SPR) theory: tutorial. Review of Polarography 48(3):209–237

    Article  Google Scholar 

  34. Sultan MF, Al-Zuky AA, Kadhim SA (2018) Performance parameters evaluation of surface plasmon resonance based fiber optic sensor with different bilayer metals: theoretical study. Al-Mustansiriyah Journal of Science 29(1):195–203

    Article  Google Scholar 

  35. Kassa-Baghdouche L, Cassan E (2020) Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities. Opt Quant Electron 52(5):260

    Article  CAS  Google Scholar 

  36. Rahad R, Sharar SS, Haque MA. Exploring the diverse applications of plasmonic refractive index sensors: unveiling a new realm of possibilities

  37. McDonald EJ, Turcotte AL (1948) Density and refractive indices of lactose solutions. J Res Natl Bur Stand 41(63):e68

    Google Scholar 

  38. Haque MA, Rahad R, Rakib AK, Sharar SS, Sagor RH (2023) Plasmonic sensor for rapid detection of water adulteration in honey and quantitative measurement of lactose concentration in solution. Results in Physics 51:106733

    Article  Google Scholar 

  39. Bensalah H, Hocini A, Bahri H, Khedrouche D, Ingebrandt S, Pachauri V (2023) A plasmonic refractive index sensor with high sensitivity and its application for temperature and detection of biomolecules. J Opt 52(3):1035–1046

    Article  Google Scholar 

  40. Sun P, Chen Y, Gao C, Liu X, Yang X, Xu M (2019) Heavy metal ion detection on a surface plasmatic resonance based on the change of refractive index. In 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing and Imaging 10843:365–373). SPIE

  41. Mostufa S, Akib TB, Rana MM, Islam MR (2022) Highly sensitive TiO2/Au/graphene layer-based surface plasmon resonance biosensor for cancer detection. Biosensors 12(8):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sagor RH, Hassan MF, Sharmin S, Adry TZ, Emon MA (2020) Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection. Results in Physics 19:103611

    Article  Google Scholar 

  43. Butt MA, Kaźmierczak A, Kazanskiy NL, Khonina SN (2021) Metal-insulator-metal waveguide-based racetrack integrated circular cavity for refractive index sensing application. Electronics 10(12):1419

    Article  Google Scholar 

  44. Chou Chau YF, Ming TY, Chou Chao CT, Thotagamuge R, Kooh MR, Huang HJ, Lim CM, Chiang HP (2021) Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep 11(1):18515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rashid KS, Tathfif I, Yaseer AA, Hassan MF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express 29(23):37541–37554

    Article  CAS  PubMed  Google Scholar 

  46. Butt MA (2022) Plasmonic sensor realized on metal-insulator-metal waveguide configuration for refractive index detection. Photonics Letters of Poland 14(1):1–3

    Article  CAS  Google Scholar 

  47. Kushwaha AS, Kumar A, Kumar A, Srivastava SK (2022) A study of improved bimetallic graphene–based fiber optic surface plasmon resonance (FOSPR) biosensor. Plasmonics 17(3):1009–1016

    Article  CAS  Google Scholar 

  48. Salah NH, Pal A, Rasul HM, Uniyal A (2024) Sensitivity enhancement of the surface plasmon resonance sensor based on gallium-doped zinc oxide and silicon for cancer detection: a wavelength interrogation approach. Micro and Nanostructures 186:207736

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Imed Sassi. The manuscript was written with contributions from all authors. All authors have given approval to the final version of the manuscript. Imed Sassi wrote the first draft of the manuscript, and all authors commented on the previous versions. The detailed contributions of each co-author are as follows: conceived and designed the devices: Imed Sassi and Mariem Zbidi. Performed the numerical simulation: Imed Sassi. Analyzed the data: Imed Sassi. Drafted the manuscript: Imed Sassi, Mariem Zbidi, and Joni Welman Simatupang. Revised the manuscript: Imed Sassi, Mounir Ben El Hadj Rhouma, Mariem Zbidi, and Joni Welman Simatupang.

Corresponding author

Correspondence to Imed Sassi.

Ethics declarations

Ethical Approval

Not applicable. The work presented in this manuscript is mathematical modeling only for the proposed biosensor. No experiment was performed on the human body and living organism/animal so ethical approval from an ethical committee is not required.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassi, I., Rhouma, M.B.E.H., Zbidi, M. et al. A Highly Sensitive Structure Based on Prism, Silver, and Titanium Dioxide for Biochemical Sensing Applications. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02271-y

Keywords

Navigation