Skip to main content
Log in

Ag Ions Versus Ag Nanoparticle-Embedded Glass for Antimicrobial Activity Under Light

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Incorporating silver nanoparticles (NPs) into a host material has been recognized to limit the release of Ag+ ions, yet their efficacy in neutralizing nearby microorganisms remains uncertain. This study aims to compare the toxicity of Ag+ ions versus the plasmonic effect of Ag NPs within a glass matrix, assessing their respective killing efficiency and mechanisms against microorganisms. To achieve this objective, a simple ion exchange technique was employed to embed glass with silver ions, nanoclusters (NCs), or NPs, which was confirmed by UV–Vis-NIR spectrometer, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The biocidal action of these Ag species on model Escherichia coli (E. coli) bacteria was investigated in the absence and presence of visible light. The findings revealed that in the absence of light, plasmonic Ag NPs were less toxic to E. coli compared to Ag+ ions due to the predominant release of Ag+ ions dictating the antibacterial effect. However, exposure to visible light triggered the plasmonic effect in Ag NPs to disintegrate 100% E. coli in 1 h compared to Ag+ ions (68%) owing to the localized heating around the Ag NPs, facilitated by surface plasmon resonance relaxation. The cell morphology investigated by Bio-AFM assisted in unraveling the mechanism leading to bacterial cell damage. Overall, this study demonstrates the sustained disinfection capability of Ag NPs embedded in glass without significant leaching, emphasizing their potential in prolonged antimicrobial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  2. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces 105:342–352. https://doi.org/10.1016/j.colsurfb.2012.07.036

    Article  CAS  PubMed  Google Scholar 

  4. Jiao Y, Li X, Zhang X et al (2023) Silver antibacterial surface adjusted by hierarchical structure on 3D printed porous titanium alloy. Appl Surf Sci 610:155519. https://doi.org/10.1016/J.APSUSC.2022.155519

    Article  CAS  Google Scholar 

  5. Hamad A, Khashan KS, Hadi A (2020) Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym Mater 30:4811–4828. https://doi.org/10.1007/S10904-020-01744-X/TABLES/4

    Article  CAS  Google Scholar 

  6. Panáček A, Kvítek L, Prucek R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. https://doi.org/10.1021/jp063826h

    Article  CAS  PubMed  Google Scholar 

  7. Franci G, Falanga A, Galdiero S et al (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunz JN, Voronine DV, Lu W et al (2017) Aluminum plasmonic nanoshielding in ultraviolet inactivation of bacteria. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-08593-8

    Article  CAS  Google Scholar 

  9. Gamage McEvoy J, Zhang Z (2014) Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J Photochem Photobiol, C 19:62–75. https://doi.org/10.1016/j.jphotochemrev.2014.01.001

    Article  CAS  Google Scholar 

  10. Shi H, Li G, Sun H et al (2014) Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X=Cl, Br, I) plasmonic photocatalysts: bacterial performance and deactivation mechanism. Appl Catal B 158–159:301–307. https://doi.org/10.1016/j.apcatb.2014.04.033

    Article  CAS  Google Scholar 

  11. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231. https://doi.org/10.1002/CPHC.200500113

    Article  CAS  PubMed  Google Scholar 

  12. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962. https://doi.org/10.1021/JP0475640

    Article  CAS  PubMed  Google Scholar 

  13. Romdoni Y, Kadja GTM, Kitamoto Y, Khalil M (2023) Synthesis of multifunctional Fe3O4@SiO2-Ag nanocomposite for antibacterial and anticancer drug delivery. Appl Surf Sci 610:155610. https://doi.org/10.1016/J.APSUSC.2022.155610

    Article  CAS  Google Scholar 

  14. Wang P, Song Y, Mei Q et al (2022) Sliver nanoparticles@carbon dots for synergistic antibacterial activity. Appl Surf Sci 600:154125. https://doi.org/10.1016/J.APSUSC.2022.154125

    Article  CAS  Google Scholar 

  15. Candreva A, De Rose R, Perrotta ID et al (2023) Light-induced clusterization of gold nanoparticles: a new photo-triggered antibacterial against E. coli proliferation. Nanomaterials 13:746. https://doi.org/10.3390/NANO13040746/S1

  16. Guglielmelli A, D’Aquila P, Palermo G et al (2023) Role of the human serum albumin protein corona in the antimicrobial and photothermal activity of metallic nanoparticles against Escherichia coli bacteria. ACS Omega 8:31333–31343. https://doi.org/10.1021/ACSOMEGA.3C03774/ASSET/IMAGES/LARGE/AO3C03774_0009.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taye MB (2022) Biomedical applications of ion-doped bioactive glass: a review. Applied Nanoscience 12(12):3797–3812. https://doi.org/10.1007/S13204-022-02672-7

    Article  ADS  CAS  Google Scholar 

  18. Hussein EA, Zagho MM, Nasrallah GK, Elzatahry AA (2018) Recent advances in functional nanostructures as cancer photothermal therapy. Int J Nanomedicine 13:2897–2906. https://doi.org/10.2147/IJN.S161031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Varma RS, Kothari DC, Tewari R (2009) Nano-composite soda lime silicate glass prepared using silver ion exchange. J Non Cryst Solids 355:1246–1251. https://doi.org/10.1016/j.jnoncrysol.2009.05.001

    Article  ADS  CAS  Google Scholar 

  20. Berneschi S, Righini GC, Pelli S (2021) Towards a glass new world: the role of ion-exchange in modern technology. Applied Sciences 11:4610. https://doi.org/10.3390/APP11104610

    Article  CAS  Google Scholar 

  21. Guldiren D, Aydin S (2016) Characterization and antimicrobial properties of soda lime glass prepared by silver/sodium ion exchange. Mater Sci Eng, C 67:144–150. https://doi.org/10.1016/J.MSEC.2016.04.109

    Article  CAS  Google Scholar 

  22. Guldiren D, Aydın S (2017) Antimicrobial property of silver, silver-zinc and silver-copper incorporated soda lime glass prepared by ion exchange. Mater Sci Eng C Mater Biol Appl 78:826–832. https://doi.org/10.1016/J.MSEC.2017.04.134

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Dong W, Qiao L et al (2007) Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing. J Cryst Growth 305:278–284. https://doi.org/10.1016/J.JCRYSGRO.2007.04.026

    Article  ADS  CAS  Google Scholar 

  24. Varma RS, Kothari DC, Mallik AK et al (2015) Optical properties of ion exchanged and swift heavy ion beam treated silicate glasses. Adv Mater Lett 6:425–431. https://doi.org/10.5185/AMLETT.2015.5724

    Article  CAS  Google Scholar 

  25. Fuertes G, Sánchez-Muñoz OL, Pedrueza E et al (2011) Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation. Langmuir 27:2826–2833. https://doi.org/10.1021/la1045282

    Article  CAS  PubMed  Google Scholar 

  26. Sarkar D, Khare D, Kaushal A et al (2019) Green and scalable synthesis of nanosilver loaded silica microparticles by spray-drying: application as antibacterial agent, catalyst and SERS substrate. Applied Nanoscience (Switzerland) 9:1925–1937. https://doi.org/10.1007/S13204-019-01031-3/METRICS

    Article  ADS  CAS  Google Scholar 

  27. Yallappa S, Manjanna J, Dhananjaya BL et al (2016) Phytochemically functionalized cu and ag nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nanomicro Lett 8:120–130. https://doi.org/10.1007/s40820-015-0066-0

    Article  CAS  PubMed  Google Scholar 

  28. Bing W, Chen Z, Sun H et al (2015) Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res 8:1648–1658. https://doi.org/10.1007/s12274-014-0654-1

    Article  CAS  Google Scholar 

  29. Song J, Kang H, Lee C et al (2012) Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl Mater Interfaces 4:460–465. https://doi.org/10.1021/am201563t

    Article  CAS  PubMed  Google Scholar 

  30. Kędziora A, Wieczorek R, Speruda M et al (2021) Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: experimental and computational studies. Front Microbiol 12:1707. https://doi.org/10.3389/FMICB.2021.659614/BIBTEX

    Article  Google Scholar 

  31. Kędziora A, Speruda M, Krzyżewska E et al (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19. https://doi.org/10.3390/IJMS19020444

  32. Manikandan D, Mohan S, Nair KGM (2003) Absorption and luminescence of silver nanocomposite soda-lime glass formed by Ag+-Na+ ion-exchange. Mater Res Bull 38:1545–1550. https://doi.org/10.1016/S0025-5408(03)00165-X

    Article  CAS  Google Scholar 

  33. Dubiel M, Haug J, Kruth H et al (2009) Temperature dependence of EXAFS cumulants of Ag nanoparticles in glass. J Phys Conf Ser 190:1–6. https://doi.org/10.1088/1742-6596/190/1/012123

    Article  CAS  Google Scholar 

  34. Simo A, Polte J, Pfänder N et al (2012) Formation mechanism of silver nanoparticles stabilized in glassy matrices. J Am Chem Soc 134:18824–18833. https://doi.org/10.1021/ja309034n

    Article  CAS  PubMed  Google Scholar 

  35. Yu C, Schira R, Brune H et al (2018) Optical properties of size selected neutral Ag clusters: electronic shell structures and the surface plasmon resonance. Nanoscale 10:20821–20827. https://doi.org/10.1039/c8nr04861d

    Article  CAS  PubMed  Google Scholar 

  36. Cattaruzza E, Mardegan M, Trave E et al (2011) Modifications in silver-doped silicate glasses induced by ns laser beams. Appl Surf Sci 257:5434–5438. https://doi.org/10.1016/j.apsusc.2010.11.099

    Article  ADS  CAS  Google Scholar 

  37. Mooradian A (1969) Photoluminescence of metals. Phys Rev Lett 22:185–187. https://doi.org/10.1103/PhysRevLett.22.185

    Article  ADS  CAS  Google Scholar 

  38. Mekki A, Holland D, McConville CF, Salim M (1996) An XPS study of iron sodium silicate glass surfaces. J Non Cryst Solids 208:267–276. https://doi.org/10.1016/S0022-3093(96)00523-6

    Article  ADS  CAS  Google Scholar 

  39. Singh P, Garg A, Pandit S et al (2018) Antimicrobial effects of biogenic nanoparticles Nanomaterials 8:1–19. https://doi.org/10.3390/nano8121009

    Article  CAS  Google Scholar 

  40. Xiu ZM, Zhang QB, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. https://doi.org/10.1021/nl301934w

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ranjana Varma thanks WOS-A scheme (SR/WOS-A/PM-5/2017) for providing financial support. The authors are grateful to Prof. D C Kothari, University of Mumbai, India for fruitful discussion and useful suggestions. Nainesh Patel thanks CHRIST University for providing SEED funding (SMSS-2107).

Funding

Department of Science and technology, India, WOS-A scheme (SR/WOS-A/PM-5/2017) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

NT: performed the experiments and prepared the initial draft of manuscript. RV: analysis of data. KD: performed AFM and analyzed the data. VKM: performed antibacterial test. BMB: writing the manuscript. RP: performed the XPS and analyzed data. NP: supervising the complete work and preparing the final manuscript.

Corresponding authors

Correspondence to Ranjana Varma or Nainesh Patel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3323 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorat, N., Varma, R., Date, K. et al. Ag Ions Versus Ag Nanoparticle-Embedded Glass for Antimicrobial Activity Under Light. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02233-4

Keywords

Navigation