Skip to main content
Log in

Excitation of Surface Plasmon Polaritons (SPPs) at Uniaxial Chiral-Graphene Planar Structure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene has garnered significant interest since its discovery. In graphene, surface plasmon polaritons (SPPs) are excited at frequencies ranging from mid-infrared to terahertz, which is not possible with traditional plasmonic materials. In this manuscript, numerical analysis of SPPs at uniaxial chiral-graphene planar structure is delineated. The surface conductivity of monolayer graphene is modeled by Kubo formulism. The dispersion relation is obtained analytically by applying impedance boundary conditions on the tangential field components. Extended electromagnetic theory is utilized to solve the analytical problem. The variation in effective mode index under the different values of chirality and graphene features (chemical potential, relaxation time, and number of layers) for three types of uniaxial chiral media, i.e., \({\varepsilon }_{t}\) > 0,\({\varepsilon }_{z}\)> 0, \({\varepsilon }_{t}\) < 0, \({\varepsilon }_{z}\) < 0 and \({\varepsilon }_{t}\) > 0, \({\varepsilon }_{z}\) < 0 are analyzed in the THz frequency regime. It is found that the effective mode index is very sensitive when both longitudinal and transverse components of permittivity exhibit opposite signs as compared to other two cases. To confirm the presence of SPPs for the suggested structure, the normalized field distribution for uniaxial chiral medium is also studied. The present work holds promising potential for the fabrication of high-density nanophotonic chips at THz frequency regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Detail about data has been provided in the article.

References

  1. Polo J, Mackay T, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Newnes

  2. Elston SJ, Sambles JR (1990) Surface plasmon-polaritons on an anisotropic substrate

  3. Wang HJOM (1995) Excitation of surface plasmon oscillations at an interface between anisotropic dielectric and metallic media 4(5):651–656

    CAS  Google Scholar 

  4. Abdulhalim I (2008) Surface plasmon TE and TM waves at the anisotropic film–metal interface. J Opt A Pure Appl Opt 11(1):015002

  5. Maier SA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides 2(4):229–232

    CAS  Google Scholar 

  6. Weeber J-C et al (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light 60(12):9061

    CAS  Google Scholar 

  7. Oulton RF et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation 2(8):496–500

    CAS  Google Scholar 

  8. Bozhevolnyi SI et al (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators 440(7083):508–511

    CAS  Google Scholar 

  9. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

  10. Nemova G, Kashyap R (2006) Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Opt Lett 31(14):2118–2120

  11. Tripathi SM et al (2008) Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton 26(13):1980–1985

    Google Scholar 

  12. Usbeck K et al (1998) Distributed optochemical sensor network using evanescent field interaction in fibre Bragg gratings. InEuropean Workshop on Optical Fibre Sensors. SPIE

  13. Mansuripur M et al (2009) Plasmonic nano-structures for optical data storage 17(16):14001–14014

    CAS  Google Scholar 

  14. Shi J et al (2021) Nonlinear nanophotonics based on surface plasmon polaritons 119(13):130501

    CAS  Google Scholar 

  15. Gordon R (2008) Surface plasmon nanophotonics: a tutorial. IEEE Nanotechnol Mag 2(3):12–18.

  16. Luo X, Yan L (2012) Surface plasmon polaritons and its applications. IEEE Photonics J 4(2):590–595

  17. Yokogawa S, Burgos SP, Atwater HA (2012)  Plasmonic color filters for CMOS image sensor applications. Nano lett 12(8):4349–4354

  18. Ashino M, Ohtsu M (1998) Fabrication and evaluation of a localized plasmon resonance probe for near-field optical microscopy/spectroscopy. Appl Phys Lett 72(11):1299–1301

  19. Lin W et al (2018) Propagating surface plasmon polaritons for remote excitation surface-enhanced Raman scattering spectroscopy 53(10):771–782

    Google Scholar 

  20. Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45(11):113001

  21. Kawata S, Ohtsu M,  Irie M (2001) Near-field optics and surface plasmon polaritons.  Springer Science & Business Media 81

  22. Cui TJ, Shen X (2013) THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips. IEEE Trans Terahertz Sci Technol 6(2):147–164

  23. Gric T, Rafailov EJO (2022) Propagation of surface plasmon polaritons at the interface of metal-free metamaterial with anisotropic semiconductor inclusions 254:168678

    CAS  Google Scholar 

  24. Ioannidis T, Gric T, Rafailov EJP (2021) Looking into surface plasmon polaritons guided by the acoustic metamaterials 16:1835–1839

    CAS  Google Scholar 

  25. Gric T, Hess O (2017) Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials.  Opt Express 25(10):11466–11476.

  26. Gric T (2016) Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Prog Electromagn Res M 46:165–172

  27. Gric T, Rafailov EJO, Electronics Q (2020) A systematic insight into the surface plasmon polaritons guided by the graphene based heterostructures 52(9):404

    CAS  Google Scholar 

  28. Wang X, Shi G (2015) An introduction to the chemistry of graphene. Phys Chem Chem Phys 17(43):28484–28504

  29. Liu S et al (2014) Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam 104(20):201104

    Google Scholar 

  30. Engheta N, Jaggard DL (1998) Electromagnetic chirality and its applications.  IEEE Antennas and Propagation Society Newsletter 30(5):6–12

  31. Jaggard DL, Mickelson AR, Papas CH (1979) On electromagnetic waves in chiral media.  Appl Phys 18: 211–216

  32. Faryad M (2019) Surface plasmon-polariton waves guided by reciprocal, uniaxially chiral, bianisotropic material. in Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII.  SPIE

  33. Ghaffar A et al (2014) Radiation properties of a uniaxial chiral quadratic inhomogeneous slab under oblique incidence 125(4):1589–1597

    Google Scholar 

  34. Ghaffar A, Alkanhal MA (2014) Electromagnetic waves in parallel plate uniaxial anisotropic chiral waveguides. Opt Mater Express 4(9):1756–1761

  35. Yaqoob MZ (2019) Characteristics of light–plasmon coupling on chiral–graphene interface. JOSA B 36(1):90–95

  36. Vakil A, Engheta NJS (2011) Transformation optics using graphene 332(6035):1291–1294

    CAS  Google Scholar 

  37. Idzuchi H, Fert A, Otani Y (2015) Revisiting the measurement of the spin relaxation time in graphene-based devices. Phys Rev B 91(24):241407

  38. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104(8).

  39. Gao Y et al (2014) Analytical model for plasmon modes in graphene-coated nanowire 22(20):24322–24331

    CAS  Google Scholar 

  40. Kim KK et al (2010) Enhancing the conductivity of transparent graphene films via doping 21(28):285205

    Google Scholar 

  41. Toqeer I et al (2019) Characteristics of dispersion modes supported by graphene chiral graphene waveguide 186:28–33

    CAS  Google Scholar 

  42. Yaqoob MZ et al (2019)  Analysis of hybrid surface wave propagation supported by chiral metamaterial–graphene–metamaterial structures. Results Phys 14:102378

  43. Yaqoob MZ et al (2018) Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure. Sci Rep 8(1):18029

  44. Azam M et al (2021) Dispersion characteristics of surface plasmon polaritons (SPPs) in graphene–chiral–graphene waveguide. Waves in Random and Complex Media 1–12.

Download references

Acknowledgements

The authors would like to thank the Higher Education Commission of Pakistan for the funding through HEC Indigenous Ph.D. Fellowship Program.

Funding

Higher Education Commission of Pakistan,through HEC Indigenous Ph.D. Fellowship Program

Author information

Authors and Affiliations

Authors

Contributions

MA wrote the main manuscript and derived analytical expressions. AG edited the manuscript and reviewed the numerical analysis. MYN and HNB developed methodology in the given study. Author MA was also encouraged and completely supervised during the preparation of the manuscript by AG. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Abdul Ghaffar.

Ethics declarations

Ethical Approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Ghaffar, A., Naz, M.Y. et al. Excitation of Surface Plasmon Polaritons (SPPs) at Uniaxial Chiral-Graphene Planar Structure. Plasmonics (2024). https://doi.org/10.1007/s11468-023-02168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02168-2

Keywords

Navigation