Skip to main content

Advertisement

Log in

Investigation of Antibacterial Activity and Wound Healing Promotion Properties Induced by Bromelain-Loaded Silver Nanoparticles

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

With the demand for better chronic wound care, the clinical problem of managing wound infections has already reached a critical level. Therefore, the development of novel antibiotic-free wound dressings is essential for wound care. The proteolytic enzyme bromelain, silver nanoparticles (AgNPs), and bromelain loaded on silver nanoparticles (Br-AgNPs) were assessed for their impact on wound healing in the albino mice. The formulated nanoparticles were characterized using different techniques, i.e., ultraviolet (UV), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analysis. The antibacterial and fungal activities of the formulated nanoparticles were also investigated. After 5 days of treatment, the wound healing progression and wound size reduction rate were monitored. In addition, serum and skin tissue samples were collected to assess the changes in inflammation levels and observe the histological changes. The results indicated a spherical shape and regular distribution of the synthesized gold nanoparticles, with an average particle size of 41.33–61.30 nm, where the size was about 39.84 and 82.91 nm after loading bromelain. The Br-AgNPs were the most active antimicrobial agents against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Candida albicans, as compared to the other samples and positive controls. The fibronectin and collagen III levels were significantly increased in the animal groups treated with bromelain and Br-AgNPs (7132.52 ± 324.67 and 7006.00 ± 565.19 pg/ml, respectively), compared to the negative control group. Moreover, wound closure was significantly enhanced in the Br-AgNP-treated animals compared to the other treated and control groups. The histopathological analysis supported the wound healing potential of the Br-AgNPs through their ability to induce dense fibrous connective tissue in the wound area, which was rich in irregular bundles of collagen fibers and interspersed with numerous fibroblasts. The present findings could provide valuable insight into how Br-AgNPs can accelerate wound healing, reduce recovery time, and provide an antimicrobial barrier for wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Sen CK (2021) Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care 10:281–292

    Article  Google Scholar 

  2. Mohammed HA, Mohammed SAA, Khan O, Ali HM (2022) Topical eucalyptol ointment accelerates wound healing and exerts antioxidant and anti-inflammatory effects in rats’ skin burn model. J Oleo Sci 71:1777–1788

    Article  CAS  PubMed  Google Scholar 

  3. FrykbergRobert G (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582

  4. Mohammed HA, Qureshi KA, Ali HM, Al-Omar MS, Khan O, Mohammed SAA (2022) Bio-evaluation of the wound healing activity of Artemisia judaica L. as part of the plant’s use in traditional medicine; phytochemical, antioxidant, anti-inflammatory, and antibiofilm properties of the plant’s essential oils. Antioxidants 11:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qureshi KA, Mohammed SAA, Khan O, Ali HM, El-Readi MZ, Mohammed HA (2022) Cinnamaldehyde-based self-nanoemulsion (CA-SNEDDS) accelerates wound healing and exerts antimicrobial, antioxidant, and anti-inflammatory effects in rats’ skin burn model. Molecules 27:5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH (2017) Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomedicine Biotechnol 45:1234–1240

    Article  CAS  Google Scholar 

  7. Rahayu P, Agustina L, Tjandrawinata RR (2017) Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio 7:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdul Muhammad Z, Ahmad T (2017) Therapeutic uses of pineapple-extracted bromelain in surgical care-A review. J Pakistan Med Assoc 67:121

    Google Scholar 

  9. Lee J-H, Lee J-B, Lee J-T, Park H-R, Kim J-B (2018) Medicinal effects of bromelain (Ananas comosus) targeting oral environment as an anti-oxidant and anti-inflammatory agent. J Food Nutr Res 6:773–784

    Article  CAS  Google Scholar 

  10. Mohammed HA, Khan RA, Singh V, Yusuf M, Akhtar N, Sulaiman GM, Albukhaty S, Abdellatif AAH, Khan M, Mohammed SAA (2023) Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnol Rev 12:20220517

    Article  CAS  Google Scholar 

  11. Al-Musawi MM, Al-Bairuty GA, Al-Shmgani HS (2022) The comparative effect of copper oxide nanoparticles and copper sulfate on reproductive hormones and sperm parameters in mature male albino mice. Ann Biol 83:317–321

    Google Scholar 

  12. Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L (2023) Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chem Lett 34:107518

    Article  CAS  Google Scholar 

  13. Cong Y, Baimanov D, Zhou Y, Chen C, Wang L (2022) Penetration and translocation of functional inorganic nanomaterials into biological barriers. Adv Drug Deliv Rev 191:114615

  14. Al-Rikabi RH, Al-Shmgani HS (2018) Evaluation of hesperidin protective effect on lipopolysaccharide-induced inflammation and lipid peroxidation in BALB/C mail mice. Res J Pharm Technol 11:5513–5516

    Article  Google Scholar 

  15. Baygar T, Sarac N, Ugur A, Karaca IR (2019) Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem 86:254–258

    Article  CAS  PubMed  Google Scholar 

  16. Ibraheem DR, Hussein NN, Sulaiman GM, Mohammed HA, Khan RA, Al Rugaie O (2022) Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials 12:2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohammed HA, Amin MA, Zayed G, Hassan Y, El-Mokhtar M, Saddik MS (2023) In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. J Antibiot (Tokyo) 76(5):291–300. https://doi.org/10.1038/s41429-023-00603-4

  18. Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, Kowalczuk M, Martin C, Radecka I (2020) Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromol 21:1802–1811

    Article  CAS  Google Scholar 

  19. Natsuki J, Natsuki T, Hashimoto Y (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4:325–332

    CAS  Google Scholar 

  20. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  CAS  PubMed  Google Scholar 

  21. Verma P, Maheshwari SK (2019) Applications of silver nanoparticles in diverse sectors. Int J Nano Dimens 10:18–36

    CAS  Google Scholar 

  22. Khatoon UT, Nageswara Rao GVS, Mohan KM, Ramanaviciene A, Ramanavicius A (2017) Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum 146:259–265. https://doi.org/10.1016/j.vacuum.2017.10.003

    Article  CAS  Google Scholar 

  23. Shehabeldine AM, Salem SS, Ali OM, Abd-Elsalam KA, Elkady FM, Hashem AH (2022) Multifunctional silver nanoparticles based on chitosan: antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. J Fungi 8:612

    Article  CAS  Google Scholar 

  24. Yaseen II, Al-Shmgani HS, Hafidh A (2021) Influence of platelet-rich plasma and ascorbic acid on carboplatininduced hematotoxicity in male albino rats. Int J Drug Deliv Technol 11:807

    Google Scholar 

  25. Yerragopu PS, Hiregoudar S, Nidoni U, Ramappa KT, Sreenivas AG, Doddagoudar SR (2020) Chemical synthesis of silver nanoparticles using tri-sodium citrate, stability study and their characterization. Int Res J Pure Appl Chem 21:37–50

    Article  Google Scholar 

  26. Bayram EN, Al-Bakri NA, A-Shmgani HS (2023) Zinc chloride can mitigate the alterations in metallothionein and some apoptotic proteins induced by cadmium chloride in mice hepatocytes: a histological and immunohistochemical study. J Toxicol 2023:2200539

    Article  PubMed  PubMed Central  Google Scholar 

  27. Poadang S, Yongvanich N, Phongtongpasuk S (2017) Synthesis, characterization, and antibacterial properties of silver nanoparticles prepared from aqueous peel extract of pineapple, ananas comosus, Chiang Mai Univ. J Nat Sci 16:123–133

    Google Scholar 

  28. Guntur SR, Kumar NSS, Hegde MM, Dirisala VR (2018) In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata. Anal Chem Insights 13:1177390118782877

    Article  PubMed  PubMed Central  Google Scholar 

  29. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J (2016) Gold nanoparticle–conjugated quercetin inhibits epithelial–mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49:678–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qaddoori MH, Al-Shmgani HS (2023) Galangin-loaded gold nanoparticles: molecular mechanisms of antiangiogenesis properties in breast cancer. Int J Breast Cancer 2023:3251211. https://doi.org/10.1155/2023/3251211

  31. Parodi A, Haddix SG, Taghipour N, Scaria S, Taraballi F, Cevenini A, Yazdi IK, Corbo C, Palomba R, Khaled SZ (2014) Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix. ACS Nano 8:9874–9883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma M, Sharma R (2018) Implications of designing a bromelain loaded enteric nanoformulation on its stability and anti-inflammatory potential upon oral administration. RSC Adv 8:2541–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebrahimian M, Mahvelati F, Malaekeh-Nikouei B, Hashemi E, Oroojalian F, Hashemi M (2022) Bromelain loaded lipid-polymer hybrid nanoparticles for oral delivery: Formulation and characterization. Appl Biochem Biotechnol 194:3733–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taha ZK, Hawar SN, Sulaiman GM (2019) Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotech Lett 41:899–914

    Article  CAS  Google Scholar 

  35. Khan B, Nawaz M, Hussain R, Price GJ, Warsi MF, Waseem M (2021) Enhanced antibacterial activity of size-controlled silver and polyethylene glycol functionalized silver nanoparticles. Chem Pap 75:743–752

    Article  CAS  Google Scholar 

  36. George S, Bhasker S, Madhav H, Nair A, Chinnamma M (2014) Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system. Mol Biotechnol 56:166–174

    Article  CAS  PubMed  Google Scholar 

  37. Mamo J, Assefa F (2019) Antibacterial and anticancer property of bromelain: a plant protease enzyme from pineapples (Ananas comosus). Curr Trends Biomed Eng Biosci 19(2):556009

    Google Scholar 

  38. Mameli A, Natoli V, Casu C (2020) Bromelain: an overview of applications in medicine and dentistry. Biointerface Res Appl Chem 11:8165–8170

    Article  Google Scholar 

  39. Arefin P, Habib S, Arefin A, Arefin S (2020) A review of clinical uses of bromelain and concerned purification methods to obtain its pharmacological effects efficiently. Int J Pharm Res 12:469–478

    Google Scholar 

  40. Ali AA, Mohammed AM, Isa AG (2015) Antimicrobial effects of crude bromelain extracted from pineapple fruit (Ananas comosus (Linn.) Merr.). Adv Biochem 3(1):1–4

  41. Dhanalakshmi M, Thenmozhi S, Devi KM, Kameshwaran S (2013) Silver nanoparticles and its antibacterial activity. Int J Pharm Biol Arch 4:819–826

    Google Scholar 

  42. Brakebusch M, Wintergerst U, Petropoulou T, Notheis G, Husfeld L, Belohradsky BH, Adam D (2001) Bromelain is an accelerator of phagocytosis, respiratory burst and killing of Candida albicans by human granulocytes and monocytes. Eur J Med Res 6:193–200

    CAS  PubMed  Google Scholar 

  43. Subha V, Kirubanandan S, Ilangovan R, Renganathan S (2021) Silver nanoparticles impregnat-ed nanocollagen as scaffold for soft tissue repair-synthesis, characterization, and In vitro Investigation. Int J Med Nano Res 8(1):034. https://doi.org/10.23937/2378-3664.1410034

  44. Sinclair And RD, Ryan TJ (1994) Proteolytic enzymes in wound healing: the role of enzymatic debridement. Australas J Dermatol 35:35–41

    Article  Google Scholar 

  45. Zardooz H, Rostamkhani F, Zaringhalam J, Faraji Shahrivar F (2010) Plasma corticosterone, insulin and glucose changes induced by brief exposure to isoflurane, diethyl ether and CO2 in male rats. Physiol Res 59(6):973–978

    CAS  PubMed  Google Scholar 

  46. Lesmana M, Girsang E, Nasution AN (2022) Role of surf redfish (Actinopyga mauritiana) in wound incision healing activities of diabetic mice. Maj Kedokt Bandung 54:24–30

    Article  Google Scholar 

  47. Bao L, Cai X, Zhang M, Xiao Y, Jin J, Qin T, Li Y (2022) Bovine collagen oligopeptides accelerate wound healing by promoting fibroblast migration via PI3K/Akt/mTOR signaling pathway. J Funct Foods 90:104981

    Article  CAS  Google Scholar 

  48. Insuan O, Janchai P, Thongchuai B, Chaiwongsa R, Khamchun S, Saoin S, Insuan W, Pothacharoen P, Apiwatanapiwat W, Boondaeng A (2021) Anti-inflammatory effect of pineapple rhizome bromelain through downregulation of the NF-κB-and MAPKs-signaling pathways in lipopolysaccharide (LPS)-stimulated RAW264. 7 cells. Curr Issues Mol Biol 43:93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fitzhugh DJ, Shan S, Dewhirst MW, Hale LP (2008) Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol 128:66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosenberg L, Krieger Y, Silberstein E, Arnon O, Sinelnikov IA, Bogdanov-Berezovsky A, Singer AJ (2012) Selectivity of a bromelain based enzymatic debridement agent: a porcine study. Burns 38:1035–1040

    Article  PubMed  Google Scholar 

  51. Weinzierl A, Harder Y, Schmauss D, Menger MD, Laschke MW (2022) Bromelain protects critically perfused musculocutaneous flap tissue from necrosis. Biomedicines 10:1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rocha DA, de Rezende Queiroz E, Botelho LNS, Fráguas RM, dos Santos CM, Abreu CMP, de Sousa RV (2019) In vitro enzyme activity and in vivo healing activity of the protein extract from pineapple peel. Acta Sci Biol Sci 41:41466

    Article  Google Scholar 

  53. Qadir A, Jahan S, Aqil M, Warsi MH, Alhakamy NA, Alfaleh MA, Khan N, Ali A (2021) Phytochemical-based nano-pharmacotherapeutics for management of burn wound healing. Gels 7:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhagavathy S, Kancharla S (2016) Wound healing and angiogenesis of silver nanoparticle from Azadirachta indica in diabetes induced mice. Int J Herb Med 4:24–29

    Google Scholar 

  55. Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A (2020) Silver nanomaterials for wound dressing applications. Pharmaceutics 12:821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the University of Baghdad, University of Technology, and University of Misan, Iraq, for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M. A. A., H. S. A.-S., and G. M. S.; methodology: M. A. A. and H. S. A.-S.; software: H. A. M. and E. A. A.; validation: S. A.; formal analysis: E. A. A., S. A., and S. A.; investigation: H. A. M.; resources: M. A. A.; data curation: H. S. A.-S., G. M. S., and S. A.; writing—original draft preparation: M. A. A., H. S. A.-S., and G. M. S.; writing—review and editing: M. A. A., H. S. A.-S., G. M. S., and H. A. M.; visualization: M. A. A., H. S. A.-S., and G. M. S.; supervision: H. S. A.-S. and G. M. S.; project administration: H. S. A.-S. and G. M. S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hanady S. Al-Shmgani or Ghassan M. Sulaiman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3467 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashij, M.A., Al-Shmgani, H.S., Sulaiman, G.M. et al. Investigation of Antibacterial Activity and Wound Healing Promotion Properties Induced by Bromelain-Loaded Silver Nanoparticles. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02127-x

Keywords

Navigation