Skip to main content
Log in

Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene-based terahertz (THz) devices, such as modulators, detectors, and absorbers, play important roles in terahertz applications due to graphene’s effectively tunable terahertz absorption. The features of these terahertz devices are greatly related to the THz absorption of graphene. However, the monolayer graphene shows limited absorption to terahertz waves. In this paper, we demonstrated a new graphene composite with a double circular metal ring array deposited on graphene to enhance the absorption. The graphene composite consists of a double circular metal ring array, a monolayer graphene, silicon dioxide, and silicon substrates. The double circular metal ring array locally enhances the electromagnetic field on graphene and further increases graphene’s absorption. It shows that the peak absorption of the proposed graphene composite is increased to 95% for graphene Fermi level 0 eV at room temperature, which is more than seven times larger than that of the graphene composite without the double circular metal ring array. The enhanced terahertz absorption of the proposed graphene composite shows the potential ability of improving modulation depth and insertion loss of a THz reflection modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1(2):97–105

    Article  CAS  Google Scholar 

  2. Yin X, Ng BW, Abbott D (2012) Terahertz imaging for biomedical applications: pattern recognition and tomographic reconstruction. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4614-1821-4

    Book  Google Scholar 

  3. Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780. https://doi.org/10.1038/ncomms1787

    Article  CAS  PubMed  Google Scholar 

  4. Ho L, Pepper M, Taday P (2008) Terahertz spectroscopy: signatures and fingerprints. Nat Photon 2(9):541–543. https://doi.org/10.1038/nphoton.2008.174

    Article  CAS  Google Scholar 

  5. Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly MM, Jena D, Liu L, Xing HG (2012) Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett 12(9):4518–4522. https://doi.org/10.1021/nl3016329

    Article  CAS  PubMed  Google Scholar 

  6. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622. https://doi.org/10.1038/nphoton.2010.186

    Article  CAS  Google Scholar 

  7. Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780

  8. Lee SH, Choi M, Kim T-T, Lee S, Liu M, Yin X, Choi HK, Lee SS, Choi C-G, Choi S-Y, Zhang X, Min B (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11(11):936–941. https://doi.org/10.1038/nmat3433

    Article  CAS  PubMed  Google Scholar 

  9. Yang K, Liu S, Arezoomandan S, Nahata A, Sensale-Rodriguez B (2014) Graphene-based tunable metamaterial terahertz filters. Appl Phys Lett 105(9):093105

    Article  Google Scholar 

  10. Fallahi A, Perruisseau-Carrier J (2012) Design of tunable biperiodic graphene metasurfaces. Phys Rev B 86(19):195408. https://doi.org/10.1103/PhysRevB.86.195408

    Article  CAS  Google Scholar 

  11. Andryieuski A, Lavrinenko AV (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express 21(7):9144–9155. https://doi.org/10.1364/OE.21.009144

    Article  CAS  PubMed  Google Scholar 

  12. Dawlaty JM, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer MG, Veksler D, Chen Y (2008) Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 93(13):131905

    Article  Google Scholar 

  13. Batrakov K, Kuzhir P, Maksimenko S, Volynets N, Voronovich S, Paddubskaya A, Valusis G, Kaplas T, Svirko Y, Lambin P (2016) Enhanced microwave-to-terahertz absorption in graphene. Appl Phys Lett 108(12):123101. https://doi.org/10.1063/1.4944531

    Article  CAS  Google Scholar 

  14. Gao W, Shu J, Reichel K, Nickel DV, He X, Shi G, Vajtai R, Ajayan PM, Kono J, Mittleman DM, Xu Q (2014) High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 14(3):1242–1248. https://doi.org/10.1021/nl4041274

    Article  CAS  PubMed  Google Scholar 

  15. Nikitin AY, Guinea F, Garcia-Vidal FJ, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85(8):081405

  16. Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the VUB through the SRP-project M3D2. The authors also acknowledge Huizhou Speed Wireless Technology Co. Ltd. for offering the access of the commercial software HFSS and Bin Yu from this company for the technical assistance of the software usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Stiens, J. Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array. Plasmonics 13, 1705–1710 (2018). https://doi.org/10.1007/s11468-017-0682-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0682-2

Keywords

Navigation