Skip to main content
Log in

Modification of Front Surface Antireflection of Silicon Solar Cells with Composite Metallic Nanoparticle Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This work reports on a numerical simulation study of the front surface modification of silicon solar cells by using composite metallic nanoparticle arrays. On top of the front surface of the cells, composite arrays that are made of silver or gold nanoparticles are carefully designed. The radii of the nanoparticles in the composite array and the lattice constant of the array are respectively varied, and the corresponding light reflectance at the front surface of the cell is calculated in the wavelength range from 400 to 1100 nm, via the FDTD method. The results determined from the composite arrays reveal that the reflectance curve across the whole wavelength range studied presents a more uniform behavior, compared with simple arrays. It is shown that the surface plasmon excitation effect of the metallic nanoparticles plays a crucial role in the light reflectance performance at the front surface of the silicon solar cells. The dependence of the light reflectance on the direction of the incident light’s polarization is also investigated, and it is found that the polarization has little effect on the reflectance curves once the composite arrays are optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chhajed S, Schubert M F, Kim J K, Schubert E F (2008) Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Appl. Phys. Lett. 93 (25):251108

    Article  CAS  Google Scholar 

  2. Zhao J, Wang A, Altermatt P, Green M A (1995) Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66(26):3636–3638

    Article  CAS  Google Scholar 

  3. Han K S, Shin J H, Lee H (2010) Enhanced transmittance of glass plates for solar cells using nano-imprint lithography. Sol Energy Mater Sol Cells 94(3):583–587

    Article  CAS  Google Scholar 

  4. Liu B, Qiu S, Chen N, Du G, Sun J (2013) Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells. Mater Sci Semicond Process 16(3):1014–1021

    Article  CAS  Google Scholar 

  5. Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W (2008) Zno nanostructures as efficient antireflection layers in solar cells. Nano Lett 8(5):1501–1505

    Article  CAS  PubMed  Google Scholar 

  6. Singh H K, Sharma P, Solanki C S (2014) Broadband reflection minimization using silver ultra thin film sandwiched between silicon nitride layers for c-Si solar cell application. Plasmonics 9(6):1409–1416

    Article  CAS  Google Scholar 

  7. Bae H S, Kim C, Rhee I, Jo H J, Kim D H, Hong S (2014) Enhancement of the CIGS solar cells efficiency by anti-reflection coating with Teflon AF. J Korean Physical Soc 65(10):1517–1519

    Article  CAS  Google Scholar 

  8. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087

    Article  CAS  PubMed  Google Scholar 

  9. Han S E, Chen G (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett 10(3):1012–1015

    Article  CAS  PubMed  Google Scholar 

  10. Pudasaini P R, Ayon A A (2012) Nanostructured thin film silicon solar cells efficiency improvement using gold nanoparticles. Phys Status Solidi (a) 209(8):1475–1480

    Article  CAS  Google Scholar 

  11. Wang F, Yu H, Li J, Wong S, Sun X W, Wang X, Zheng H (2011) Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface. J. Appl. Phys. 109(8):084306

    Article  CAS  Google Scholar 

  12. Peng K Q, Wang X, Li L, Wu X L, Lee S T (2010) High-performance silicon nanohole solar cells. J Am Chem Soc 132(20):6872–6873

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, You J, Chen C C, Hsu W C, Tan H R, Zhang X W, Hong Z, Yang Y (2011) Plasmonic polymer tandem solar cell. ACS Nano 5(8):6210–6217

    Article  CAS  PubMed  Google Scholar 

  14. Poh C H, Rosa L, Juodkazis S, Dastoor P (2011) FDTD Modeling to enhance the performance of an organic solar cell embedded with gold nanoparticles. Opt Mater Express 1(7):1326–1331

    Article  CAS  Google Scholar 

  15. Atwater H A, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  PubMed  Google Scholar 

  16. Catchpole K R, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800

    Article  CAS  PubMed  Google Scholar 

  17. Pillai S, Catchpole K R, Trupke T, Green M A (2007) Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9): 093105

    Article  CAS  Google Scholar 

  18. Pudasaini P R, Ayon A A (2013) Modeling the front side plasmonics effect in nanotextured silicon surface for thin film solar cells application. Microsyst Technol 19(6):871–877

    Article  CAS  Google Scholar 

  19. Sun C, Su J, Wang X (2015) A design of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10(3):633–641

    Article  CAS  Google Scholar 

  20. Sun C, Wang X (2015) Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10(6):1307–1314

    Article  CAS  Google Scholar 

  21. Sun C, Wang Z, Wang X, Liu J (2015) A surface design for enhancement of light trapping efficiencies in thin film silicon solar cells. Plasmonics, 1–8

  22. Starowicz Z, Kulesza-Matlak G, Lipiski M (2015) Optimization studies on enhanced absorption in thin silicon solar cell by plasmonic silver nanoparticles for the front side configuration. Plasmonics 10(6):1639–1647

    Article  CAS  Google Scholar 

  23. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

  24. Palik ED (1998) Handbook of optical constants of solids, Vol. 3, Academic press

Download references

Acknowledgments

C. Sun acknowledges support by Grant Number 31400718 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Sun or Xiaoqiu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Sun, C. & Wang, X. Modification of Front Surface Antireflection of Silicon Solar Cells with Composite Metallic Nanoparticle Arrays. Plasmonics 12, 589–596 (2017). https://doi.org/10.1007/s11468-016-0302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0302-6

Keywords

Navigation