Skip to main content
Log in

Dynamics of the phase-change material GeTe across the structural phase transition

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Results of inelastic neutron scattering experiments and ab initio molecular dynamics simulations for GeTe–the parent compound of phase-change materials are reported. The inelastic neutron spectra of GeTe powder samples have been determined in the temperature range extending from 300 to 700 K. The phonon peaks undergo thermal shifts resulting from anharmonic effects being weaker for acoustic than optic modes. A small concentration of free charge carries arising from the presence of Ge-vacancies was found not to affect significantly the neutron weighted phonon densities of states of GeTe. The spectral pattern changes qualitatively across the structural phase transition, but the local structure of GeTe remains hardly affected, as confirmed by the analysis of temperature dependence of the pairdistribution function obtained from ab initio molecular dynamics investigations. The present theoretical studies support in a wide extent our experimental observations and also those provided by local probe methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. 6(11), 824 (2007)

    ADS  Google Scholar 

  2. S. Raoux, F. Xiong, M. Wuttig, and E. Pop, Phase change materials and phase change memory, MRS Bull. 39(08), 703 (2014)

    Google Scholar 

  3. L. Wang, L. Tu, and J. Wen, Application of phase-change materials in memory taxonomy, Sci. Technol. Adv. Mater. 18(1), 406 (2017)

    Google Scholar 

  4. E. F. Steigmeier and G. Harbeke, Soft phonon mode and ferroelectricity in GeTe, Solid State Commun. 8(16), 1275 (1970)

    ADS  Google Scholar 

  5. T. Chattopadhyay, J. X. Boucherele, and H. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C 20(10), 1431 (1987)

    ADS  Google Scholar 

  6. P. Fons, A. V. Kolobov, M. Krbal, J. Tominaga, K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, and T. Uruga, Phase transition in crystalline GeTe: Pitfalls of averaging effects, Phys. Rev. B 82(15), 155209 (2010)

    ADS  Google Scholar 

  7. T. Matsunaga, P. Fons, V. Kolobov, J. Tominaga, and N. Yamada, The order-disorder transition in GeTe: Views from different length-scales, Appl. Phys. Lett. 99(23), 231907 (2011)

    ADS  Google Scholar 

  8. F. Kadlec, C. Kadlec, P. Kužel, and J. Petzelt, Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy, Phys. Rev. B 84(20), 205209 (2011)

    ADS  Google Scholar 

  9. M. J. Polking, J. J. Urban, D. J. Milliron, H. Zheng, E. Chan, M. A. Caldwell, S. Raoux, C. F. Kisielowski, J. W. III Ager, R. Ramesh, and A. P. Alivisatos, Sizedependent polar ordering in colloidal GeTe nanocrystals, Nano Lett. 11(3), 1147 (2011)

    ADS  Google Scholar 

  10. J. Hudspeth, T. Chatterji, S. Billinge, and S. Kimber, Unifying local and average structure in the phase change material GeTe, arXiv: 1506.08944 (2015)

    Google Scholar 

  11. T. Chatterji, C. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)

    ADS  Google Scholar 

  12. G. Kalra and S. Murugavel, The role of atomic vacancies on phonon confinement in a-GeTe, AIP Adv. 5(4), 047127 (2015)

    ADS  Google Scholar 

  13. D. Yang, T. Chatterji, J. A. Schiemer, and M. A. Carpenter, Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride, Phys. Rev. B 93(14), 144109 (2016)

    ADS  Google Scholar 

  14. M. Sist, H. Kasai, E. M. J. Hedegaard, and B. B. Iversen, Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe, Phys. Rev. B 97(9), 094116 (2018)

    ADS  Google Scholar 

  15. S. D. Gupta, G. V. Varada, and G. S. Agarwal, Surface plasmons in two-sided corrugated thin films, Phys. Rev. B 36(12), 6331 (1987)

    ADS  Google Scholar 

  16. J. Raty, V. Godlevsky, P. Ghosez, C. Bichara, J. Gaspard, and J. Chelikowsky, Evidence of a reentrant Peierls distortion in liquid GeTe, Phys. Rev. Lett. 85(9), 1950 (2000)

    ADS  Google Scholar 

  17. R. Shaltaf, X. Gonze, M. Cardona, R. K. Kremer, and G. Siegle, Lattice dynamics and specific heat of a-GeTe: Theoretical and experimental study, Phys. Rev. B 79(7), 075204 (2009)

    ADS  Google Scholar 

  18. A. J. Bevolo, H. R. Shanks, and D. E. Eckels, Molar heat capacity of GeTe, SnTe, and PbTe from 0.9 to 60 K, Phys. Rev. B 13(8), 3523 (1976)

    ADS  Google Scholar 

  19. J. Raty, P. Noé, G. Ghezzi, S. Maitrejean, C. Bichara, and F. Hippert, Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe, Phys. Rev. B 88(1), 014203 (2013)

    ADS  Google Scholar 

  20. U. D. Wdowik, K. Parlinski, S. Rols, and T. Chatterji, Soft-phonon mediated structural phase transition in GeTe, Phys. Rev. B 89(22), 224306 (2014)

    ADS  Google Scholar 

  21. K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H. S. Jeong, and M. H. Cho, Evolution of crystal structures in GeTe during phase transition, Sci. Rep. 7(1), 955 (2017)

    ADS  Google Scholar 

  22. D. Dangic, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savic, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)

    ADS  Google Scholar 

  23. R. Mittal, M. K. Gupta, S. L. Chaplot, M. Zbiri, S. Rols, H. Schober, Y. Su, T. Brueckel, and T. Wolf, Spin-phonon coupling in K0:8Fe1:6Se2 and KFe2Se2: Inelastic neutron scattering and ab initio phonon calculations, Phys. Rev. B 87(18), 184502 (2013)

    ADS  Google Scholar 

  24. H. Schober, A. Tölle, B. Renker, R. Heid, and F. Gompf, Microscopic dynamics of A 60C compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering, Phys. Rev. B 56(10), 5937 (1997)

    ADS  Google Scholar 

  25. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon Press, 1986

    Google Scholar 

  26. G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications, 1997

    Google Scholar 

  27. V. F. Sears, Neutron scattering lengths and cross sections, Neutron News 3(3), 26 (1992)

    Google Scholar 

  28. U. D. Wdowik, K. Parlinski, T. Chatterji, S. Rols, and H. Schober, Lattice dynamics of rhenium trioxide from the quasiharmonic approximation, Phys. Rev. B 82(10), 104301 (2010)

    ADS  Google Scholar 

  29. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    ADS  Google Scholar 

  30. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Google Scholar 

  31. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

    ADS  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)

    ADS  Google Scholar 

  34. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    ADS  Google Scholar 

  35. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1998)

    ADS  Google Scholar 

  36. S. H. Garofalini, Molecular dynamics simulation of the frequency spectrum of amorphous silica, J. Chem. Phys. 76(6), 3189 (1982)

    ADS  Google Scholar 

  37. T. Róg, K. Murzyn, K. Hinsen, and G. R. Kneller, n Moldyn: A program package for a neutron scattering oriented analysis of molecular dynamics simulations, J. Comput. Chem. 24(5), 657 (2003)

    Google Scholar 

  38. D. B. Zhang, T. Sun, and R. M. Wentzcovitch, Phonon quasiparticles and anharmonic free energy in complex systems, Phys. Rev. Lett. 112(5), 058501 (2014)

    ADS  Google Scholar 

  39. T. Sun, D. B. Zhang, and R. M. Wentzcovitch, Dynamic stabilization of cubic CaSiO3 perovskite at high temperatures and pressures from ab initio molecular dynamics, Phys. Rev. B 89(9), 094109 (2014)

    ADS  Google Scholar 

  40. U. D. Wdowik and K. Parlinski, Lattice dynamics of cobalt-deficient CoO from first principles, Phys. Rev. B 78(22), 224114 (2008)

    ADS  Google Scholar 

  41. U. D. Wdowik and K. Parlinski, Lattice dynamics of Fedoped CoO from first principles, J. Phys.: Condens. Matter 21(12), 125601 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

D. Legut, VSB-Technical University of Ostrava, Czech Republic is acknowledged for technical assistance. This work was supported by the IT4Innovations national supercomputing center VSB-Technical University of Ostrava, Czech Republic - Path to Exascale project No. CZ.02.1.01/0.0/0.0/16_013/0001791 and IT4Innovations Excellence in Science LQ1602 project. The Interdisciplinary Center for Mathematical and Computational Modeling (ICM), Warsaw University, Poland is acknowledged for providing computer facilities under Grants No. G28-12 and No. GB70-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. D. Wdowik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterji, T., Rols, S. & Wdowik, U.D. Dynamics of the phase-change material GeTe across the structural phase transition. Front. Phys. 14, 23601 (2019). https://doi.org/10.1007/s11467-018-0864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0864-1

Keywords

Navigation