Skip to main content
Log in

Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number (C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Xiao, M. C. Chang, and Q. Niu, Berry phases effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  3. E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171 (1937)

    Article  ADS  Google Scholar 

  4. F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)

    Article  Google Scholar 

  5. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. L. P. Rokhinson, X. Liu, and J. K. Furdyna, The fractional a.c. Josephson effect in a semiconductorsuperconductor nanowire as a signature of Majorana particles, Nat. Phys. 8(11), 795 (2012)

    Article  Google Scholar 

  7. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)

    Article  Google Scholar 

  8. M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414 (2012)

    Article  ADS  Google Scholar 

  9. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices, Science 336(6084), 1003 (2012)

    Article  ADS  Google Scholar 

  10. L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C. Zhang, Hole-doped semiconductor nanowire on top of an s-wave superconductor: a new and experimentally accessible system for Majorana fermions, Phys. Rev. Lett. 108(17), 177001 (2012)

    Article  ADS  Google Scholar 

  11. G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nucl. Phys. B 360(2–3), 362 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(2), 657 (2003)

    Article  ADS  Google Scholar 

  13. N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)

    Article  ADS  Google Scholar 

  14. L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)

    Article  ADS  Google Scholar 

  15. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)

    Article  ADS  Google Scholar 

  16. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)

    Article  ADS  Google Scholar 

  17. Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)

    Article  ADS  Google Scholar 

  18. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)

    Article  Google Scholar 

  19. A. C. Potter and P. A. Lee, Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films, Phys. Rev. Lett. 105(22), 227003 (2010)

    Article  ADS  Google Scholar 

  20. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)

    Article  ADS  Google Scholar 

  21. P. Wang, Z.Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)

    Article  ADS  Google Scholar 

  22. L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin-orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302 (2012)

    Article  ADS  Google Scholar 

  23. M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett. 103(2), 020401 (2009)

    Article  ADS  Google Scholar 

  24. X.-J. Liu, H. Pu, and H. Hu, Probing Majorana fermions in spin-orbit-coupled atomic Fermi gases, Phys. Rev. A 85, 021603(R) (2011)

    Article  ADS  Google Scholar 

  25. R. Casalbuoni and G. Nardulli, Inhomogeneous superconductivity in condensed matter and QCD, Rev. Mod. Phys. 76(1), 263 (2004)

    Article  ADS  Google Scholar 

  26. M. Kenzelmann, T. Strassle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A. D. Bianchi, R. Movshovich, E. D. Bauer, J. L. Sarrao, and J. D. Thompson, Coupled superconducting and magnetic order in CeCoIn5, Science 321(5896), 1652 (2008)

    Article  ADS  Google Scholar 

  27. L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces, Nat. Phys. 7(10), 762 (2011)

    Article  Google Scholar 

  28. Y. A. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Spin-imbalance in a one-dimensional Fermi gas, Nature 467(7315), 567 (2010)

    Article  ADS  Google Scholar 

  29. P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)

    Article  ADS  Google Scholar 

  30. A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964)

    Google Scholar 

  31. F. Wu, G. Guo, W. Zhang, and W. Yi, Unconventional superfluid in a two-dimensional Fermi gas with anisotropic spin-orbit coupling and Zeeman fields, Phys. Rev. Lett. 110(11), 110401 (2013)

    Article  ADS  Google Scholar 

  32. Z. Zheng, M. Gong, X. Zou, C. Zhang, and G. Guo, Route to observable Fulde–Ferrell–Larkin–Ovchinnikov phases in three-dimensional spin-orbit-coupled degenerate Fermi gases, Phys. Rev. A 87, 031602(R) (2013)

    Article  ADS  Google Scholar 

  33. X. J. Liu, K. T. Law, and T. K. Ng, Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett. 112(8), 086401 (2014)

    Article  ADS  Google Scholar 

  34. C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G. Guo, and C. Zhang, Topological superfluids with finite momentum pairing and Majorana fermions, Nat. Commun. 4, 2710 (2013)

    Article  ADS  Google Scholar 

  35. W. Zhang and W. Yi, Topological Fulde–Ferrell–Larkin–Ovchinnikov states in spin-orbit-coupled Fermi gases, Nat. Commun. 4, 2711 (2013)

    Article  ADS  Google Scholar 

  36. C. Chen, Inhomogeneous topological superfluidity in one-dimensional spin-orbit-coupled Fermi gases, Phys. Rev. Lett. 111(23), 235302 (2013)

    Article  ADS  Google Scholar 

  37. Y. Cao, S.H. Zou, X.J. Liu, S. Yi, G.L. Long, and H. Hu, Gapless topological Fulde–Ferrell superfluidity in spinorbital coupled Fermi gases, Phys. Rev. Lett. 113(11), 115302 (2014)

    Article  ADS  Google Scholar 

  38. T. Zhou, Y. Gao, and Z. D. Wang, Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases, Sci. Rep. 4(1), 5218 (2015)

    Article  Google Scholar 

  39. Y. Xu, C. Qu, M. Gong, and C. Zhang, Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices, Phys. Rev. A 89(1), 013607 (2014)

    Article  ADS  Google Scholar 

  40. D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97(3), 036808 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Y. S. Wu, R. B. Tao, T. K. Lee, and A. Varlamov for fruitful discussions. This work was supported by the State Key Programs of China (Grant Nos. 2017YFA0304204, and 2016YFA0300504) and the National Natural Science Foundation of China (Grant Nos. 11625416 and 11474064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YW., Chen, Y. Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system. Front. Phys. 13, 137402 (2018). https://doi.org/10.1007/s11467-017-0728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0728-0

Keywords

Navigation