Skip to main content
Log in

Symmetric Hermitian decomposability criterion, decomposition, and its applications

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

The Hermitian tensor is an extension of Hermitian matrices and plays an important role in quantum information research. It is known that every symmetric tensor has a symmetric CP-decomposition. However, symmetric Hermitian tensor is not the case. In this paper, we obtain a necessary and sufficient condition for symmetric Hermitian decomposability of symmetric Hermitian tensors. When a symmetric Hermitian decomposable tensor space is regarded as a linear space over the real number field, we also obtain its dimension formula and basis. Moreover, if the tensor is symmetric Hermitian decomposable, then the symmetric Hermitian decomposition can be obtained by using the symmetric Hermitian basis. In the application of quantum information, the symmetric Hermitian decomposability condition can be used to determine the symmetry separability of symmetric quantum mixed states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohnet-Waldraff F, Braun D, Giraud O. Tensor eigenvalues and entanglement of symmetric states. Phys Rev A, 2016, 94: 042324

    Article  Google Scholar 

  2. Bohnet-Waldraff F, Braun D, Giraud O. Entanglement and the truncated moment problem. Phys Rev A, 2017, 96: 032312

    Article  Google Scholar 

  3. Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric tensor decomposition. Linear Algebra Appl, 2010, 433: 1851–1872

    Article  MathSciNet  MATH  Google Scholar 

  4. Breiding P, Vannieuwenhoven N. A Riemannian trust region method for the canonical tensor rank approximation problem. SIAM J Optim, 2018, 28: 2435–2465

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang K-C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416–422

    Article  MathSciNet  MATH  Google Scholar 

  6. Chiantini L, Ottaviani G, Vannieuwenhoven N. Effective criteria for specific identifiability of tensors and forms. SIAM J Matrix Anal Appl, 2017, 38: 656–681

    Article  MathSciNet  MATH  Google Scholar 

  7. Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30: 1254–1279

    Article  MathSciNet  MATH  Google Scholar 

  8. Comon P, Lim L-H, Qi Y, Ye K. Topology of tensor ranks. Adv Math, 2020, 367: 107–128

    Article  MathSciNet  MATH  Google Scholar 

  9. Derksen H, Friedland S, Lim L -H, Wang L. Theoretical and computational aspects of entanglement. arXiv: 1705.07160

  10. Domanov I, Lathauwer L De. Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL. SIAM J Matrix Anal Appl, 2015, 36: 1567–1589

    Article  MathSciNet  MATH  Google Scholar 

  11. Dressler M, Nie J, Yang Z. Separability of Hermitian tensors and PSD decompositions. Linear Algebra Appl, https://doi.org/10.1080/03081087.2021.1965078

  12. Fu T, Jiang B, Li Z. On decompositions and approximations of conjugate partial-symmetric complex tensors. arXiv: 1802.09013

  13. Galuppi F, Mella M. Identifiability of homogeneous polynomials and Cremona transformations. J Reine Angew Math, 2019, 757: 279–308

    Article  MathSciNet  MATH  Google Scholar 

  14. Giraud O, Braun D, Baguette D, Bastin T, Martin J. Tensor representation of spin states. Phys Rev Lett, 2015, 114: 080401

    Article  Google Scholar 

  15. Horodecki M, Horodecki P. Reduction criterion of separability and limits for a class of distillation protocols. Phys Rev A, 1999, 59: 4206–4216

    Article  Google Scholar 

  16. Jiang B, Li Z, Zhang S. Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J Matrix Anal Appl, 2016, 37: 381–408

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51: 455–500

    Article  MathSciNet  MATH  Google Scholar 

  18. Kruskal J. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl, 1977, 18: 95–138

    Article  MathSciNet  MATH  Google Scholar 

  19. Landsberg J M. Tensors: Geometry and Applications. Grad Stud Math, Vol 128. Providence: Amer Math Soc, 2012

    MATH  Google Scholar 

  20. Landsberg J M, Teitler Z. On the ranks and border ranks of symmetric tensors. Found Comput Math, 2010, 10: 339–366

    Article  MathSciNet  MATH  Google Scholar 

  21. Lathauwer L De. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J Matrix Anal Appl, 2006, 28: 642–666

    Article  MathSciNet  MATH  Google Scholar 

  22. Lathauwer L De, Moor B De, Vandewalle J. Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J Matrix Anal Appl, 2004, 26: 295–327

    Article  MathSciNet  MATH  Google Scholar 

  23. Li Y, Ni G. Separability discrimination and decomposition of m-partite quantum mixed states. Phys Rev A, 2020, 102: 012402

    Article  MathSciNet  Google Scholar 

  24. Li Z, Nakatsukasa Y, Soma T, Uschmajew A. On orthogonal tensors and best rank-one approximation ratio. SIAM J Matrix Anal Appl, 2018, 39: 400–425

    Article  MathSciNet  MATH  Google Scholar 

  25. Lim L-H. Tensors and hypermatrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Discrete Math Appl (Boca Raton). Boca Raton: CRC Press, 2014, 15–1–15–30

    Google Scholar 

  26. Milazzo N, Braun D, Giraud O. Truncated moment sequences and a solution to the channel separability problem. arXiv: 2006.15003

  27. Ni G. Hermitian tensor and quantum mixed state. arXiv: 1902.02640

  28. Ni G, Qi L, Bai M. Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J Matrix Anal Appl, 2014, 35: 73–87

    Article  MathSciNet  MATH  Google Scholar 

  29. Nie J. Generating polynomials and symmetric tensor decompositions. Found Comput Math, 2017, 17: 423–465

    Article  MathSciNet  MATH  Google Scholar 

  30. Nie J. Low rank symmetric tensor approximations. SIAM J Matrix Anal Appl, 2017, 38: 1517–1540

    Article  MathSciNet  MATH  Google Scholar 

  31. Nie J, Yang Z. Hermitian tensor decompositions. SIAM J Matrix Anal Appl, 2020, 41(3): 1115–1144

    Article  MathSciNet  MATH  Google Scholar 

  32. Nie J, Zhang X. Positive maps and separable matrices. SIAM J Optim, 2018, 26(2): 1236–1256

    Article  MathSciNet  MATH  Google Scholar 

  33. Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and a hierarchical elimination algorithm. SIAM J Matrix Anal Appl, 2014, 35: 1227–1241

    Article  MathSciNet  MATH  Google Scholar 

  34. Qi L, Zhang G, Braun D, Bohnet-Waldraff F, Giraud O. Regularly decomposable tensors and classical spin states. Commun Math Sci, 2017, 15: 1651–1665

    Article  MathSciNet  MATH  Google Scholar 

  35. Qi L, Zhang G, Ni G. How entangled can a multi-party system possibly be? Phys Lett A, 2018, 382: 1465–1471

    Article  MathSciNet  MATH  Google Scholar 

  36. Sidiropoulos N, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J Chemometrics, 2000, 14: 229–239

    Article  Google Scholar 

  37. Sorber L, Barel M Van, Lathauwer L De. Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr, Lr,1) terms, and a new generalization. SIAM J Optim, 2013, 23: 695–720

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei T-C, Goldbart P M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A, 2003, 68: 042307

    Article  Google Scholar 

  39. Zhou A, Fan J. Completely positive tensor recovery with minimal nuclear value. Comput Optim Appl, 2018, 70: 419–441

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions, which helped them to improve this manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 11871472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guyan Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, G., Yang, B. Symmetric Hermitian decomposability criterion, decomposition, and its applications. Front. Math 17, 961–986 (2022). https://doi.org/10.1007/s11464-021-0927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0927-4

Keywords

MSC2020

Navigation