Skip to main content
Log in

Sharp estimates for Hardy operators on Heisenberg group

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

In the setting of the Heisenberg group, based on the rotation method, we obtain the sharp (p, p) estimate for the Hardy operator. It will be shown that the norm of the Hardy operator on L p(ℍn) is still p/(p-1). This goes some way to imply that the L p norms of the Hardy operator are the same despite the domains are intervals on ℝ, balls in ℝn, or ‘ellipsoids’ on the Heisenberg group ℍn. By constructing a special function, we find the best constant in the weak type (1, 1) inequality for the Hardy operator. Using the translation approach, we establish the boundedness for the Hardy operator from H 1 to L 1. Moreover, we describe the difference between M p weights and A p weights and obtain the characterizations of such weights using the weighted Hardy inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BényiÁ, Oh T. Best constants for certain multilinear integral operators. J Inequal Appl, 2006, Art ID 28582, 12pp

    Google Scholar 

  2. Calderón A P. Inequalities for the maximal function relative to a metric. Studia Math, 1976, 57: 297–306

    MATH  MathSciNet  Google Scholar 

  3. Carćia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. North Holland Math Studies, Vol 116. Amsterdam: North-Holland Publishing Co, 1985

  4. Chirst M, Grafakos L. Best constants for two non-convolution inequalities. Proc Amer Math Soc, 1995, 123: 1687–1693

    Article  MathSciNet  Google Scholar 

  5. Coulhon T, Muller D, Zienkiewicz J. About Riesz transforms on the Heisenberg groups. Math Ann, 1996, 305(2): 369–379

    Article  MATH  MathSciNet  Google Scholar 

  6. Drábek P, Heinig H P, Kufner A. Higher dimensional Hardy inequality. Internat Ser Numer Math, 1997, 123: 3–16

    Google Scholar 

  7. Faris W. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43: 365–373

    Article  MATH  MathSciNet  Google Scholar 

  8. Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Mathematical Notes, Vol 28. Princeton: Princeton University Press, 1982

  9. Fu Z W, Grafakos L, Lu S Z, Zhao F Y. Sharp bounds for m-linear Hardy and Hilbert operators. Houston J Math, 2012, 38: 225–244

    MATH  MathSciNet  Google Scholar 

  10. Grafakos L. Mo ntgomery-Smith S. Best constants for uncentred maximal functions. Bull Lond Math Soc, 1997, 29: 60–64

    Article  Google Scholar 

  11. Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6: 314–317

    Article  MATH  MathSciNet  Google Scholar 

  12. Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952

    MATH  Google Scholar 

  13. Korányi A, Reimann H M. Quasiconformal mappings on the Heisenberg group. Invent Math, 1985, 80: 309–338

    Article  MATH  MathSciNet  Google Scholar 

  14. Li H Q. Fonctions maximales centrées de Hardy-Littlewood sur les groupes de Heisenberg. Studia Math, 2009, 191: 89–100

    Article  MATH  MathSciNet  Google Scholar 

  15. Li H Q, Qian B. Centered Hardy-Littlewood maximal functions on Heisenberg type groups. Trans Amer Math Soc, 2014, 366(3): 1497–1524

    Article  MATH  MathSciNet  Google Scholar 

  16. Lu S Z, Ding Y, Yan D Y. Singular Integrals and Related Topics. Singapore: World Scientific Publishing Company, 2007

    Book  MATH  Google Scholar 

  17. Melas A. The best constant for the centered Hardy-Littlewood maximal inequality. Ann of Math, 2003, 157: 647–488

    Article  MATH  MathSciNet  Google Scholar 

  18. Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans Amer Math Soc, 1972, 165: 207–226

    Article  MATH  MathSciNet  Google Scholar 

  19. Niu P, Zhang H, Wang Y. Hardy type and Rellich type inequalities on the Heisenberg group. Proc Amer Math Soc, 2001, 129: 3623–3630

    Article  MATH  MathSciNet  Google Scholar 

  20. Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, Vol 43. Princeton: Princeton University Press, 1993

  21. Xiao J. L p and BMO bounds of weighted Hardy-Littlewood averages. J Math Anal Appl, 2001, 262: 660–666

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhao F Y, Fu Z W, Lu S Z. M p weights for bilinear Hardy operators on Rn. Collect Math, 2014, 65: 87–102

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhao F Y, Fu Z W, Lu S Z. Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci China Math, 2012, 55: 1977–1990

    Article  MATH  MathSciNet  Google Scholar 

  24. Zienkiewicz J. Estimates for the Hardy-Littlewood maximal function on the Heisenberg group. Colloq Math, 2005, 103: 199–205

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunwei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Fu, Z. Sharp estimates for Hardy operators on Heisenberg group. Front. Math. China 11, 155–172 (2016). https://doi.org/10.1007/s11464-015-0508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0508-5

Keywords

MSC

Navigation