Skip to main content

Advertisement

Log in

Energy distribution during the quasi-static confined comminution of granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A method is proposed to calculate the distribution of energy during the quasi-static confined comminution of particulate assemblies. The work input, calculated by integrating the load-displacement curve, is written as the sum of the elastic deformation energy, the breakage energy and the redistribution energy. Experimental results obtained on samples subjected to compression stresses ranging between 0.4 and 92 MPa are used to calibrate the model. The elastic energy stored in the samples is obtained by simulating the compression test on the final particle size distributions (PSDs) with the discrete element method and by extracting the contact forces. A PSD evolution law is proposed to account for particle breakage. The PSD is related to the total particle surface in the sample, which allows calculating the breakage energy. The redistribution energy, which comprises the kinetic energy of particles being rearranged and the friction energy dissipated at contacts, is obtained by subtracting the elastic energy and breakage energy from the work input. Results show that: (1) at least 60% of the work input is dissipated by particle redistribution; (2) the fraction of elastic deformation energy increases, and the fraction of redistribution energy decreases as the compression stress increases; (3) the breakage energy accounts for less than 5% of the total input energy, and this value is independent of the compressive stress; (4) the energy dissipated by redistribution is between 14 and 30 times larger than the breakage energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe S, Mair K (2005) Grain fracture in 3D numerical simulations of granular shear. Geophys Res Lett 32(5):1–4

    Article  Google Scholar 

  2. Afshar T, Disfani MM, Arulrajah A, Narsilio GA, Emam S (2017) Impact of particle shape on breakage of recycled construction and demolition aggregates. Powder Technol 308:1–12

    Article  Google Scholar 

  3. Arsalan N, Palayangoda SS, Burnett DJ, Buiting JJ, Nguyen QP (2013) Surface energy characterization of sandstone rocks. J Phys Chem Solids 74(8):1069–1077

    Article  Google Scholar 

  4. ASTM (2016) Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International, West Conshohocken, PA ASTM C204

  5. Bolton M, Nakata Y, Cheng Y (2008) Micro-and macro-mechanical behaviour of dem crushable materials. Geotechnique 58(6):471–480

    Article  Google Scholar 

  6. Chan S, Ngan A (2005) Statistical distribution of contact forces in packings of deformable spheres. Mech Mater 37(4):493–506

    Article  Google Scholar 

  7. Ciantia MO, Arroyo M, Calvetti F, Gens A (2016) A numerical investigation of the incremental behavior of crushable granular soils. Int J Numer Anal Methods Geomech 40(13):1773–1798

    Article  Google Scholar 

  8. Collins I, Houlsby G (1997) Application of thermomechanical principles to the modelling of geotechnical materials. Proc R Soc Lond A Methods Phys Eng Sci 453:1975–2001

    Article  MATH  Google Scholar 

  9. Collins IF (2005) The concept of stored plastic work or frozen elastic energy in soil mechanics. Geotechnique 55(5):373–382

    Article  Google Scholar 

  10. Coop M, Sorensen K, Freitas TB, Georgoutsos G (2004) Particle breakage during shearing of a carbonate sand. Géotechnique 54(3):157–163

    Article  Google Scholar 

  11. Das A, Tengattini A, Nguyen G, Einav I (2013) A micromechanics based model for cemented granular materials. In: Yang Q, Zhang J-M, Zheng H, Yao Y (eds) Constitutive modeling of geomaterials: advances and new applications. Springer, Berlin, Heidelberg, pp 527–534. https://doi.org/10.1007/978-3-642-32814-5_71

    Chapter  Google Scholar 

  12. Einav I (2007a) Breakage mechanics—part II: modelling granular materials. J Mech Phys Solids 55(6):1298–1320

    Article  MathSciNet  MATH  Google Scholar 

  13. Einav I (2007b) Breakage mechanics—part I: theory. J Mech Phys Solids 55(6):1274–1297

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman M, Handin J, Alani G (1972) Fracture-surface energy of rocks. Int J Rock Mech Min Sci Geomech Abstr 9:757–764

    Article  Google Scholar 

  15. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A Contain Pap Math Phys Character 221:163–198

    Google Scholar 

  16. Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Article  Google Scholar 

  17. Itasca (2008) Particle flow code in two dimensions, version 4.0. Itasca Consulting Group, Inc., Minnesota

  18. Jefferies M (1997) Plastic work and isotropic softening in unloading. Géotechnique 47(5):1037–1042

    Article  Google Scholar 

  19. Jiang M, Chen H, Crosta GB (2015) Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model. Int J Rock Mech Min Sci 78:175–189

    Article  Google Scholar 

  20. Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316

    Article  Google Scholar 

  21. Li Z, Wang YH, Ma C, Mok C (2017) Experimental characterization and 3d dem simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing. Acta Geotech 12(5):987–1002

    Article  Google Scholar 

  22. McDowell G (2002) On the yielding and plastic compression of sand. Soils Found 42(1):139–145

    Article  Google Scholar 

  23. McDowell G, Bolton M, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2101

    Article  Google Scholar 

  24. Meng J, Huang J, Sheng D, Sloan S (2017) Granular contact dynamics with elastic bond model. Acta Geotech 12(3):479–493

    Article  Google Scholar 

  25. Miura N, O-HARA S (1979) Particle-crushing of a decomposed granite soil under shear stresses. Soils Found 19(3):1–14

    Article  Google Scholar 

  26. Miura N, Yamamoto T (1976) Particle-crushing properties of sands under high stresses. Technol Rep Yamaguchi Univ 1(4):439–447

    Google Scholar 

  27. Nakata Y, Hyodo M, Hyde AF, Kato Y, Murata H (2001a) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82

    Article  Google Scholar 

  28. Nakata Y, Kato Y, Hyodo M, HYDE AF, Murata H (2001b) One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found 41(2):39–51

    Article  Google Scholar 

  29. Nguyen GD, Einav I (2009) The energetics of cataclasis based on breakage mechanics. Pure Appl Geophys 166(10–11):1693–1724. https://doi.org/10.1007/s00024-009-0518-x

    Article  Google Scholar 

  30. Ovalle C, Dano C, Hicher PY (2013) Experimental data highlighting the role of surface fracture energy in quasi-static confined comminution. Int J Fract 182(1):123–130

    Article  Google Scholar 

  31. Ovalle C, Voivret C, Dano C, Hicher PY (2016) Population balance in confined comminution using a physically based probabilistic approach for polydisperse granular materials. Int J Numer Anal Methods Geomech 40(17):2383–2397

    Article  Google Scholar 

  32. Parks GA (1984) Surface and interfacial free energies of quartz. J Geophys Res Solid Earth 89(B6):3997–4008

    Article  Google Scholar 

  33. Peters J, Muthuswamy M, Wibowo J, Tordesillas A (2005) Characterization of force chains in granular material. Phys Rev E 72(4):041,307

    Article  Google Scholar 

  34. Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274

    Article  Google Scholar 

  35. Roscoe K, Schofield A, Thurairajah A (1963) Yielding of clays in states wetter than critical. Geotechnique 13(3):211–240

    Article  Google Scholar 

  36. Russell A (2011) A compression line for soils with evolving particle and pore size distributions due to particle crushing. Géotech Lett 1(1):5–9

    Article  Google Scholar 

  37. Russell AR, Einav I (2013) Energy dissipation from particulate systems undergoing a single particle crushing event. Granul Matter 15(3):299–314

    Article  Google Scholar 

  38. Sammis C, King G, Biegel R (1987) The kinematics of gouge deformation. Pure Appl Geophys 125(5):777–812

    Article  Google Scholar 

  39. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40(18):2423–2449

    Article  Google Scholar 

  40. Tarantino A, Hyde AF (2005) An experimental investigation of work dissipation in crushable materials. Géotechnique 55(8):575–584

    Article  Google Scholar 

  41. Taylor HF (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

  42. Tjioe M, Borja RI (2015) On the pore-scale mechanisms leading to brittle and ductile deformation behavior of crystalline rocks. Int J Numer Anal Methods Geomech 39(11):1165–1187

    Article  Google Scholar 

  43. Tjioe M, Borja RI (2016) Pore-scale modeling of deformation and shear band bifurcation in porous crystalline rocks. Int J Numer Methods Eng 108(3):183–212

    Article  MathSciNet  Google Scholar 

  44. Turcotte D (1986) Fractals and fragmentation. J Geophys Res Solid Earth 91(B2):1921–1926

    Article  Google Scholar 

  45. Tyler SW, Wheatcraft SW (1992) Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J 56(2):362–369

    Article  Google Scholar 

  46. Utili S, Nova R (2008) Dem analysis of bonded granular geomaterials. Int J Numer Anal Methods Geomech 32(17):1997–2031

    Article  MATH  Google Scholar 

  47. Wang J, Yan H (2012) Dem analysis of energy dissipation in crushable soils. Soils Found 52(4):644–657

    Article  Google Scholar 

  48. Wang P, Arson C (2016) Discrete element modeling of shielding and size effects during single particle crushing. Comput Geotech 78:227–236

    Article  Google Scholar 

  49. Wang P, Arson C et al (2016) Breakage mechanics modeling of the brittle-ductile transition in granular materials. In: 50th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  50. Zhang J, Majmudar T, Tordesillas A, Behringer R (2010) Statistical properties of a 2D granular material subjected to cyclic shear. Granul Matter 12(2):159–172

    Article  Google Scholar 

  51. Zhang S, Tong C, Li X, Sheng D (2015) A new method for studying the evolution of particle breakage. Géotechnique 65(11):911–922

    Article  Google Scholar 

  52. Zhang YD, Buscarnera G (2017) A rate-dependent breakage model based on the kinetics of crack growth at the grain scale. Geotechnique 67(11):953–967

    Article  Google Scholar 

  53. Zhao B, Wang J, Coop M, Viggiani G, Jiang M (2015) An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 65(8):625–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloé Arson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Arson, C. Energy distribution during the quasi-static confined comminution of granular materials. Acta Geotech. 13, 1075–1083 (2018). https://doi.org/10.1007/s11440-017-0622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0622-5

Keywords

Navigation