Skip to main content
Log in

A method for designing the longitudinal spacing of slope-stabilising shafts

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The work at hand deals with the design of the longitudinal spacing among rows of closely spaced large-diameter shafts used to stabilise a precarious slope. The problem under consideration is idealised through a conceptual framework where an unstable mass of an infinitely long slope pushes a stable portion of soil adjacent to shafts, leading to failure along a slip surface passing through the upper end of the reinforcement elements. By exploiting the upper bound theorem of plastic collapse, a closed-form solution is derived for the load required for the failure of the stable mass as a function of geometrical and mechanical parameters of the slope and the soil. Results are validated through physical model tests by means of geotechnical centrifuge. Given the satisfactory agreement between analytical and experimental results, the model is extended to evaluate the safety conditions of the reinforced slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Atkinson J (1993) An introduction to the mechanics of soils and foundations: through critical state soil mechanics. McGraw-Hill Book Company (UK) Ltd, New York

    Google Scholar 

  2. Ausilio E, Conte E, Dente G (2001) Stability analysis of slopes reinforced with piles. Comput Geotech 28(8):591–611

    Article  Google Scholar 

  3. Baguelin F, Frank R, Said YH (1977) Theoretical study of lateral reaction mechanism of piles. Géotechnique 27(3):405–434

    Article  Google Scholar 

  4. Baldi G, Belloni G, Maggioni W (1988) The ISMES geotechnical centrifuge. In: Corté JF (ed) Centrifuge 88, Paris. Balkema, Rotterdam, pp 45–48

    Google Scholar 

  5. Bosscher PJ, Gray DH (1986) Soil arching in sandy slopes. J Geotech Eng 112(6):626–645

  6. CEN (2004). Eurocode 7 Geotechnical design. Part 1: General rules. European Committee for Standardization, Brussels

  7. Chen WF (1975) Limit analysis and soil plasticity. Elsevier, Amsterdam

    MATH  Google Scholar 

  8. De Beer EE, Carpentier R (1977) Discussion of the paper by Ito and Matsui (1975). Soils Found 16(1):68–82

    Google Scholar 

  9. Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Géotechnique 43(3):443–456

    Article  Google Scholar 

  10. Fioravante V (2000) Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing. Soils Found 40(4):129–142

    Article  Google Scholar 

  11. Fioravante V (2008) Physical modelling of landslide stabilization methods in an overconsolidated clay. Geotech Test J 31(2):175–191

    Google Scholar 

  12. Guo WD (2013) Simple model for nonlinear response of 52 laterally loaded piles. J Geotech Geoenviron Eng ASCE 139:234–252

    Article  Google Scholar 

  13. Hassiotis S, Chameau JL, Gunaratne M (1997) Design method for stabilization of slopes with piles. J Geotech Geoenviron Eng ASCE 123(4):314–323

    Article  Google Scholar 

  14. Hull TS (1993) Analysis of the stability of slopes with piles. In: Proceedings of the 12th Asian Geotechnical Conference, Singapore, pp 639–643

  15. Ito T, Matsui T (1975) Methods to estimate lateral force acting on stabilizing piles. Soils Found 15(4):43–59

    Article  Google Scholar 

  16. Kourkoulis R, Gelagoti F, Anastasopoulos I, Gazetas G (2011) Slope stabilizing piles and pile-groups: parametric study and design insights. J Geotech Geoenviron Eng ASCE 137(7):663–678

    Article  Google Scholar 

  17. Kourkoulis R, Gelagoti F, Anastasopoulos I, Gazetas G (2012) Hybrid method for analysis and design of slope stabilizing piles. J Geotech Geoenviron Eng ASCE 138(1):1–14

    Article  Google Scholar 

  18. Michalowski RL (1995) Slope stability analysis-a kinematical approach. Géotechnique 45(2):283–293

    Article  MathSciNet  Google Scholar 

  19. Muir Wood D (2004) Geotechnical modelling. Spon Press, New York

    Book  Google Scholar 

  20. Muraro S, Madaschi A, Gaio A (2014) On the reliability of 3D numerical analyses on passive piles used for slope stabilisation in frictional soils. Géotechnique 64(6):486–492

    Article  Google Scholar 

  21. Oakland MW, Chameau JLA (1984) Finite element analysis of drilled piers used for slope stabilization. In: Langer JA, Mosley ET, Thompson CD (eds) Laterally loaded deep foundations: analysis and performance, ASTM STP 835, pp 182–193. West Conshohocken, PA, USA: ASTM

  22. Poulos HG (1995) Design of reinforcing piles to increase slope stability. Can Geotech J 32:808–818

    Article  Google Scholar 

  23. Schofield AN (1980) Cambridge geotechnical centrifuge operations. Géotechnique 30(3):227–268

    Article  Google Scholar 

  24. Viggiani C (1981) Ultimate lateral load on piles used to stabilize landslides. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, vol 3. Stockholm, Sweden, pp 555–560

  25. Zhang G, Wang LP (2016) Integrated analysis of a coupled mechanism for the failure processes of pile-reinforced slopes. Acta Geotech 11:941–952

    Article  Google Scholar 

  26. Zhang G, Wang LP, Wang YL (2017) Pile reinforcement mechanism of soil slopes. Acta Geotech 12:1035–1046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Di Laora.

Appendix

Appendix

1.1 Derivation of Equation (4)

With reference to the triangle OCB (see Figs. 4 and 5), the law of sines assures that:

$$\frac{{\sin {\text{O}}\widehat{\text{C}}{\text{B}}}}{{\overline{\text{OB}} }}=\frac{{\sin {\text{C}}\widehat{\text{O}}{\text{B}}}}{{\overline{\text{CB}} }} \,$$
(16)

By making use of the law of cosines:

$$\sin \Delta_{2} = \sin {\text{O}}\widehat{\text{C}}{\text{B}} = \sin {\text{C}}\widehat{\text{O}}{\text{B}}\frac{{\overline{\text{OB}} }}{{\sqrt {\overline{\text{OB}}^{2} + \overline{\text{OC}}^{2} - 2\overline{{ \cdot {\text{OB}}}} \cdot \overline{\text{OC}} \cdot \cos {\text{C}}\widehat{\text{O}}{\text{B}}} }}$$
(17)

and therefore:

$$ \begin{aligned} \sin \Delta_{2} = \sin \left( {\theta_{s} - \theta_{0} } \right) \hfill \\ \frac{{r_{0} }}{{\sqrt {r_{0}^{2} + r_{0}^{2} e^{{2\left( {\theta_{s} - \theta_{0} } \right)\tan \varphi }} - 2r_{0}^{2} e^{{\left( {\theta_{s} - \theta_{0} } \right)\tan \varphi }} \cos \left( {\theta_{s} - \theta_{0} } \right)} }} \hfill \\ = \sin \left( {\theta_{s} - \theta_{0} } \right) \hfill \\ \left( {1 + e^{{2\left( {\theta_{s} - \theta_{0} } \right)\tan \varphi }} - 2e^{{\left( {\theta_{s} - \theta_{0} } \right)\tan \varphi }} \cos \left( {\theta_{s} - \theta_{0} } \right)} \right)^{{ - \frac{1}{2}}} \hfill \\ \end{aligned} $$
(18)

from which we obtain Eq. (4).

1.2 Derivation of Equation (11)

Solving Eq. (10) for \(\dot{Q}\) and dividing both sides of the equation by \(\dot{\omega }\,\gamma H^{2} \left( {r_{0} \cos \varphi - h} \right)\):

$$ \frac{{q_{\lim } }}{\gamma H} = \frac{\begin{aligned} \dot{\omega }\,\gamma \left[ { - \frac{1}{6}Hr_{0} \left( {H\sin \alpha - 2r_{0} \cos \theta_{0} } \right)\sin \varphi } \right]\, \hfill \\ + \dot{\omega }\,\gamma \,\left[ { - \frac{1}{6}r_{s} \xi_{s} \left( \begin{aligned} 2H\sin \alpha - 2r_{0} \cos \theta_{0} \hfill \\ + \xi_{s} \cos \alpha \hfill \\ \end{aligned} \right)\sin \left( {\theta_{s} + \alpha } \right)} \right] \hfill \\ - \dot{\omega }\,\gamma \,\frac{\begin{aligned} \left( {3\tan\varphi \cos \theta_{s} + \sin \theta_{s} } \right)r_{s}^{3} \hfill \\ - \left( {3\tan\varphi \cos \theta_{0} + \sin \theta_{0} } \right)r_{0}^{3} \hfill \\ \end{aligned} }{{3\left( {1 + 9\tan^{2} \varphi } \right)}} \hfill \\ + \dot{\omega }\frac{c}{2\tan \varphi }\left( {r_{s}^{2} - r_{0}^{2} } \right) \hfill \\ \end{aligned} }{{\dot{\omega }\,\gamma H^{2} \left( {r_{0} \cos \varphi - h} \right)}} $$
(19)

Multiplying both numerator and denominator of the right side of the above equation by (6/H3) one obtains Eq. (11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Laora, R., Fioravante, V. A method for designing the longitudinal spacing of slope-stabilising shafts. Acta Geotech. 13, 1141–1153 (2018). https://doi.org/10.1007/s11440-017-0617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0617-2

Keywords

Navigation