Skip to main content
Log in

Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a novel, exact, semi-analytical solution for the quasi-static undrained expansion of a cylindrical cavity in soft soils with fabric anisotropy. This is the first theoretical solution of the undrained expansion of a cylindrical cavity under plane strain conditions for soft soils with anisotropic behaviour of plastic nature. The solution is rigorously developed in detail, introducing a new stress invariant to deal with the soil fabric. The semi-analytical solution requires numerical evaluation of a system of six first-order ordinary differential equations. The results agree with finite element analyses and show the influence of anisotropic plastic behaviour. The effective stresses at critical state are constant, and they may be analytically related to the undrained shear strength. The initial vertical cross-anisotropy caused by soil deposition changes towards a radial cross-anisotropy after cavity expansion. The analysis of the stress paths shows that proper modelling of anisotropic plastic behaviour involves modelling not only the initial fabric anisotropy but also its evolution with plastic straining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a :

Radius of the cylindrical cavity

\(c_{u}\) :

Undrained shear strength

\(c_{{u,{\text{TX}}}}\) :

Undrained shear strength for triaxial compression conditions

\(c_{{u,{\text{PS}}}}\) :

Undrained shear strength for plane strain conditions

d:

Incremental operator

D :

Elastic stiffness matrix

E :

Young’s modulus

e :

Void ratio

e M :

Void ratio at critical state

f y :

Function of the yield surface

G :

Shear modulus

K 0NC :

Coefficient of lateral earth pressure at rest in normally consolidated conditions

\(K_{0}\) :

Coefficient of lateral earth pressure at rest

\(M\) :

Slope of the critical state line

\(p^{\prime}\) :

Mean effective stress

\(p^{\prime}_{m}\) :

Preconsolidation pressure

\(q\) :

Deviatoric stress

\(\overline{q}\) :

Invariant for anisotropic models. Radius of the yield surface in π-plane

Q :

Invariant for anisotropic models: \(Q = \frac{2}{3}\bar{q}^{2}\)

R :

Isotropic overconsolidation ratio

s :

Deviatoric stress

u :

Pore pressure

u r :

Radial displacement

\(\upsilon\) :

Specific volume

\({\varvec{\upalpha}}\) :

Fabric tensor

\(\alpha\) :

Inclination of the yield surface

\({\varvec{\upalpha}}_{{\mathbf{d}}}\) :

Deviatoric fabric tensor

Λ:

Plastic multiplier

ε :

Strain scalar

ε :

Strain tensor

\({\text{d}}\varepsilon_{v}\) :

Change in volumetric strain \({\text{d}}\varepsilon_{v} = {\text{d}}\varepsilon_{r} + {\text{d}}\varepsilon_{\theta } + {\text{d}}\varepsilon_{z }\)

\({\text{d}}\varepsilon_{d}\) :

Change in deviatoric strain \({\text{d}}\varepsilon_{d} = \sqrt {\frac{2}{3}\left\{ {{\text{d}}\varvec{\varepsilon}_{d} } \right\}^{T} \cdot \left\{ {{\text{d}}\varvec{\varepsilon}_{d} } \right\}}\)

η :

Stress ratio: η = q/\(p^{\prime}\) or \({\varvec{\upeta}} = {\varvec{\upsigma}}_{{\mathbf{d}}} /p^{\prime}\) (tensor)

θ :

Lode’s angle: \(\theta = { \tan }^{ - 1} \left[ {\frac{1}{\sqrt 3 }\left( {2\frac{{\sigma_{2}^{'} - \sigma_{3}^{'} }}{{\sigma_{1}^{'} - \sigma_{3}^{'} }} - 1} \right)} \right]\)

\(\kappa\) :

Slope of swelling line from \(\upsilon - \ln p^{\prime}\) space

\(\lambda\) :

Slope of post-yield compression line from \(\upsilon - \ln p^{\prime}\) space

\(\nu\) :

Poisson’s ratio

\(\sigma\),\(\sigma '\) :

Total and effective stresses

\(\sigma_{a}\) :

Internal cavity pressure

\(\sigma_{p}\) :

Total radial stress at the elastic/plastic boundary

\(\varvec{\sigma}_{\varvec{d}}^{\varvec{'}}\) :

deviatoric stress tensor

ϕ :

Friction angle

ω, ω d :

Absolute and relative effectiveness of rotational hardening

CS:

Critical state

CSL:

Critical state line

ESP:

Effective stress path

FEM:

Finite element method

MCC:

Modified Cam clay

OCR:

Overconsolidation ratio

RH:

Rotational hardening

YS:

Yield surface

0:

Initial

d, v :

Deviatoric, volumetric

H, V :

Horizontal, vertical

i :

Any of the axis components r, θ, z

p :

Plastic

r, θ, z :

Cylindrical coordinates

References

  1. Bishop RF, Hill R, Mott NF (1945) The theory of indentation hardness tests. Proc Phys Soc 57:147–159

    Article  Google Scholar 

  2. Brinkgreve RBJ, Kumarswamy S, Swolfs WM (2015) Plaxis 2D 2015 Manual. Plaxis bv, The Netherlands

  3. Burd HJ, Houlsby GT (1990) Finite element analysis of two cylindrical expansion problems involving nearly incompressible material behavior. Int J Num Anal Methods Geomech 14:351–366

    Article  Google Scholar 

  4. Cao LF, The CI, Chang MF (2001) Undrained cavity expansion in modified Cam clay I: theoretical analysis. Géotechnique 51:323–334

    Article  Google Scholar 

  5. Castro J, Karstunen M (2010) Numerical simulations of stone column installation. Can Geotech J 47:1127–1138

    Article  Google Scholar 

  6. Ceccato F, Simonini P (2017) Numerical study of partially drained penetration and pore pressure dissipation in piezocone test. Acta Geotech 12:195–209

    Article  Google Scholar 

  7. Chen SL, Abousleiman YN (2012) Exact undrained elasto–plastic solution for cylindrical cavity expansion in modified Cam Clay soil. Géotechnique 62:447–456

    Article  Google Scholar 

  8. Collins IF, Yu HS (1996) Undrained cavity expansions in critical state soils. Int J Num Anal Methods Geomech 20(7):489–516

    Article  MATH  Google Scholar 

  9. Dafalias YF (1986) An anisotropic critical state soil plasticity model. Mech Res Commun 13:341–347

    Article  MATH  Google Scholar 

  10. Gibson RE, Anderson WF (1961) In situ measurement of soil properties with the pressuremeter. Civ Eng Publ Works Rev 56:615–618

    Google Scholar 

  11. Hill R, Mott NF, Pack DC (1944) Penetration of Munroe Jets. Armament Res Dept, Report 2/44, UK

  12. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  13. Karstunen M, Koskinen M (2008) Plastic anisotropy of soft reconstituted clays. Can Geotech J 45(3):314–328

    Article  Google Scholar 

  14. Kolymbas D, Wagner P, Blioumi A (2012) Cavity expansion in cross-anisotropic rock. Int J Num Anal Methods Geomech 36:128–139

    Article  Google Scholar 

  15. Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day, Inc

  16. Levadoux J-N (1980) Pore pressures in clays due to cone penetration. PhD Thesis, Dept Civil Eng, Mass Inst Tech

  17. Li L, Li J, Sun D (2016) Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K 0-consolidated clay. Comput Geotech 73:83–90

    Article  Google Scholar 

  18. McMeeking RM, Rice JR (1975) Finite-element formulation for problems of large elastic-plastic deformation. Int J Solids Struct 11:601–616

    Article  MATH  Google Scholar 

  19. Palmer AC (1972) Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test. Géotechnique 22:451–457

    Article  Google Scholar 

  20. Prevost JH, Hoeg K (1975) Analysis of pressuremeter in strain softening soil. J Geotech Eng Div ASCE 101:717–732

    Google Scholar 

  21. Potts DM, Zdravkovic L (1999) Finite element analysis in geotechnical engineering: theory. Thomas Telford, London

    Book  Google Scholar 

  22. Randolph MF, Carter JP, Wroth CP (1979) Driven piles in clay-the effects of installation and subsequent consolidation. Géotechnique 29:361–393

    Article  Google Scholar 

  23. Rott J, Mašín D, Boháč J, Krupička M, Mohyla T (2015) Evaluation of K0 in stiff clay by back-analysis of convergence measurements from unsupported cylindrical cavity. Acta Geotech 10:719–733

    Article  Google Scholar 

  24. Shuttle D (2007) Cylindrical cavity expansion and contraction in Tresca soil. Géotechnique 57(3):305–308

    Article  Google Scholar 

  25. Silvestri V, Abou-Samra G (2011) Application of the exact constitutive relationship of modified Cam clay to the undrained expansion of a spherical cavity. Int J Num Anal Meth Geomech 35:53–66

    Article  MATH  Google Scholar 

  26. Sivasithamparam N (2012) Development and implementation of advanced soft soil models in finite elements. PhD thesis, University of Strathlcyde, Glasgow

  27. Sivasithamparam N, Castro J (2016) An anisotropic elastoplastic model for soft clays based on logarithmic contractancy. Int J Num Anal Methods Geomech 40:596–621

    Article  Google Scholar 

  28. Van Langen H (1991) Numerical analysis of soil-structure interaction. Ph.D. thesis, Delft University of Technology, Delft, the Netherlands

  29. Vesic AS (1972) Expansion of cavities in infinite soil mass. J Soil Mech Found Div ASCE 98:265–290

    Google Scholar 

  30. Vrakas A (2016) A rigorous semi-analytical solution for undrained cylindrical cavity expansion in critical state soils. Int J Num Anal Methods Geomech 40(15):2137–2160

    Article  Google Scholar 

  31. Vrakas A (2016) Relationship between small and large strain solutions for general cavity expansion problems in elasto–plastic soils. Comput Geotech 76:147–153

    Article  Google Scholar 

  32. Vrakas A, Anagnostou G (2015) Finite strain elastoplastic solutions for the undrained ground response curve in tunnelling. Int J Numer Anal Meth Geomech 39:738–761

    Article  Google Scholar 

  33. Wheeler SJ, Naatanen A, Karstunen M, Lojander M (2003) An anisotropic elastoplastic model for soft clays. Can Geotech J 40(2):403–418

    Article  Google Scholar 

  34. Yu HS (2000) Cavity expansion methods in geomechanics. Kluwer Academic, Dordrecht

    Book  MATH  Google Scholar 

  35. Yu HS, Rowe RK (1999) Plasticity solutions for soil behaviour around contracting cavities and tunnels. Int J Num Anal Methods Geomech 23:1245–1279

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was initiated as part of GEO-INSTALL (Modelling Installation Effects in Geotechnical Engineering, PIAP-GA-2009-230638) and CREEP (Creep of Geomaterials, PIAP-GA-2011-286397) projects supported by the European Community through the programme Marie Curie Industry-Academia Partnerships and Pathways (IAPP) under the 7th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Castro.

Additional information

Bold notation is used for tensors. Compressive stresses and strains are assumed as positive because it is the conventional sign notation for geomaterials.

Appendices

Appendix 1: derivatives

The partial derivatives used in the analytical solution are

$$\frac{{\partial f_{y} }}{{\partial \sigma_{i}^{'} }} = \frac{{p^{\prime}\left( {M^{2} - \alpha^{2} - {\bar{\eta }}^{2} } \right)}}{3} + \left( {3s_{i} - s_{r} \alpha_{r}^{d} - s_{\theta } \alpha_{\theta }^{d} - s_{z} \alpha_{z}^{d} } \right)\,{\text{for}}\, i = r,\theta ,z$$

where

$${\bar{\eta }} = \frac{{\bar{q}}}{p^{\prime}}$$
(58)
$$\bar{q} = \sqrt {\frac{3}{2}Q}$$
(59)

and

$$\frac{{\partial f_{y} }}{{\partial p_{m}^{'} }} = - p^{\prime}\left( {M^{2} - \alpha^{2} } \right)$$
(60)
$$\frac{{\partial p_{m}^{'} }}{{\partial \varepsilon_{v}^{p} }} = \frac{{\upsilon p^{\prime}}}{{\left( {\lambda - \kappa } \right)\left( {M^{2} - \alpha^{2} } \right)}}\left( {M^{2} - \alpha^{2} + {\bar{\eta }}^{2} } \right)$$
(61)
$$\frac{{\partial f_{y} }}{{\partial p^{\prime}}} = p^{\prime}\left( {M^{2} - \alpha^{2} - {\bar{\eta }}^{2} } \right) - 3\left( {s_{r} \alpha_{r}^{d} + s_{\theta } \alpha_{\theta }^{d} + s_{z} \alpha_{z}^{d} } \right)$$
(62)
$$\frac{{\partial f_{y} }}{{\partial \alpha_{i}^{d} }} = - 3s_{i} p^{\prime} + 3\alpha_{i}^{d} \frac{{\bar{q}^{2} }}{{M^{2} - \alpha^{2} }} \quad{\text{for}}\, i = r,\theta ,z$$
(63)
$$\frac{{\partial f_{y} }}{{\partial \sigma_{i}^{'d} }} = 3s_{i} \quad{\text{for}}\,i = r,\theta ,z$$
(64)
$$\frac{{\partial \alpha_{i}^{d} }}{{\partial \varepsilon_{v}^{p} }} = \omega \left( {\frac{{3\left( {\sigma_{i}^{'} - p^{\prime}} \right)}}{4p^{\prime}} - \alpha_{i}^{d} } \right)\quad{\text{for}}\,i = r,\theta ,z$$
(65)
$$\frac{{\partial \alpha_{i}^{d} }}{{\partial \varepsilon_{d}^{p} }} = \omega \omega_{d} \left( {\frac{{\left( {\sigma_{i}^{'} - p^{\prime}} \right)}}{3p^{\prime}} - \alpha_{i}^{d} } \right)\quad{\text{for}}\,i = r,\theta ,z$$
(66)
$$\sqrt {\frac{2}{3}\left\{ {\frac{{\partial f_{y} }}{{\partial\varvec{\sigma}^{'d} }}} \right\} \cdot \left\{ {\frac{{\partial f_{y} }}{{\partial\varvec{\sigma}^{'d} }}} \right\}} = 2\bar{q}$$
(67)

Appendix 2: elastic solution

The solution for the elastic total stresses, (\(\sigma_{r}\), \(\sigma_{\theta }\), \(\sigma_{z}\)), and the radial displacement (\(u_{r}\)) can be obtained imposing the assumption of total volumetric strain increment is zero under undrained deformation (for details see e.g. Yu [34])

$$\sigma_{r} = \sigma_{H} + \left( {\sigma_{p} - \sigma_{H} } \right)\left( {\frac{{r_{p} }}{r}} \right)^{2}$$
(68)
$$\sigma_{\theta } = \sigma_{H} + \left( {\sigma_{p} - \sigma_{H} } \right)\left( {\frac{{r_{p} }}{r}} \right)^{2}$$
(69)
$$\sigma_{z} = \sigma_{V}$$
(70)
$$u_{r} = \frac{{\sigma_{p} - \sigma_{H} }}{{2G_{0} }}\frac{{r_{p}^{2} }}{r}$$
(71)

where \(\sigma_{p}\) is the total radial stress at the elasto/plastic boundary and \(\sigma_{H}\) and \(\sigma_{V}\) are the total horizontal and vertical stresses, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasithamparam, N., Castro, J. Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution. Acta Geotech. 13, 729–746 (2018). https://doi.org/10.1007/s11440-017-0587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0587-4

Keywords

Navigation