Skip to main content
Log in

Numerical study of partially drained penetration and pore pressure dissipation in piezocone test

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The piezocone penetration test (CPTU) is commonly used as a fast and economical tool to identify soil profile and to estimate relevant material properties in soils ranging from fine to coarse-grained. Moreover, in the case of fine-grained soils (clays and silts), the consolidation coefficient and the permeability can be estimated through the dissipation test. Undrained conditions are commonly assumed for the interpretation of CPTU in fine-grained soils, but in soils such as silts, penetration may occur in partially drained conditions. This aspect is often neglected in data interpretation thus leading to an inaccurate estimate of soil properties. This paper investigates numerically the effect of partial drainage during penetration on the measured tip resistance and the subsequent pore pressure dissipation response contributing to a more accurate interpretation of field data. A realistic simulation of the cone penetration is achieved with the two-phase Material Point Method, modelling the soil response with the modified Cam-Clay model. The approach takes into account large soil deformations induced by the advancing cone, soil–water, and soil–structure interactions, as well as nonlinear soil behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abe K, Soga K, Bandara S (2013) Material Point Method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140:1–16. doi:10.1061/(ASCE)GT.1943-5606.0001011

    Google Scholar 

  2. Al-Kafaji IKJ (2013) Formulation of a dynamic material point method (MPM) for geomechanical problems. University of Stuttgart, Stuttgart

    Google Scholar 

  3. Alonso EE, Zabala F (2011) Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61:795–808. doi:10.1680/geot.9.P.134

    Article  Google Scholar 

  4. Alonso EE, Yerro A, Pinyol NM (2015) Recent developments of the Material Point Method for the simulation of landslides. IOP Conf Ser Earth Environ Sci 26:012003. doi:10.1088/1755-1315/26/1/012003

    Article  Google Scholar 

  5. Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14:137–147. doi:10.1007/s10596-009-9137-y

    Article  MATH  Google Scholar 

  6. Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63:199–214. doi:10.1016/j.compgeo.2014.09.009

    Article  Google Scholar 

  7. Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM, Foster JC (2001) An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput Model Eng Sci 2:509–522

    MATH  Google Scholar 

  8. Beuth L (2012) Formulation and application of a quasi-static material point method. University of Stuttgart, Stuttgart

    Google Scholar 

  9. Beuth L, Vermeer PA (2013) Large deformation analysis of cone penetration testing in undrained clay. In: Hicks MA, Dijkstra J, LloretCabot M et al (eds) International conference on installation effects in geotechnical engineering (ICIEGE), Rotterdam, pp 1–7

  10. Ceccato F (2014) Study of large deformation geomechanical problems with the Material Point Method. University of Padua, Italy

    Google Scholar 

  11. Ceccato F, Beuth L, Vermeer PA, Simonini P (2014) Two-phase Material Point Method applied to cone penetration for different drainage conditions. In: Geomechanics from micro to macro—Proceedings of the TC105 ISSMGE international symposium on geomechanics from micro to macro, IS-Cambridge 2014, vol 2, pp 965–970

  12. Chai J, Sheng D, Carter JP, Zhu H (2012) Coefficient of consolidation from non-standard piezocone dissipation curves. Comput Geotech 41:13–22. doi:10.1016/j.compgeo.2011.11.005

    Article  Google Scholar 

  13. Chung SF, Randolph MF, Schneider JA (2006) Effect of penetration rate on penetrometer resistance in clay. J Geotech Geoenviron Eng 132(9):1188–1196

    Article  Google Scholar 

  14. Coetzee CJ (2005) The material point method. Stellenbosch Publishers, Stellenbosch

    MATH  Google Scholar 

  15. Coetzee CJ, Vermeer PA, Basson AH (2005) The modelling of anchors using the material point method. Int J Numer Anal Methods Geomech 29:879–895. doi:10.1002/nag.439

    Article  MATH  Google Scholar 

  16. DeJong J, Randolph M (2012) Influence of partial consolidation during cone penetration on estimated soil behavior type and pore pressure dissipation measurements. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0000646

    Google Scholar 

  17. Fahey M, Goh AL (1995) A comparison of pressuremeter and piezocone methods of determining the coefficient of consolidation. In: Press. its new Ave., pp 153–160

  18. Finnie I, Randolph M (1994) Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments. In: Proceedings of the international conference on behaviour of offshore structures

  19. Harlow F (1964) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3:319–343

    Google Scholar 

  20. House A, Oliveira J, Randolph MF (2001) Evaluating the coefficient of consolidation using penetration tests. Int J Phys Model Geotech 1:17–26

    Google Scholar 

  21. Hu W, Chen Z (2003) A multi-mesh MPM for simulating the meshing process of spur gears. Comput Struct 81:1991–2002. doi:10.1016/S0045-7949(03)00260-8

    Article  Google Scholar 

  22. Jaeger R, DeJong J, Boulanger RW, Low HE, Randolph MF (2010) Variable penetration rate CPT in an intermediate soil. In: Proceedings, 2nd international symposium on cone penetration testing

  23. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Methods Geomech Anal methods Geomech 37:2502–2522. doi:10.1002/nag

    Article  Google Scholar 

  24. Kim K, Prezzi M, Salgado R, Lee W (2008) Effect of penetration rate on cone penetration resistance in saturated clayey soils. J Geotech Geoenviron Eng 134(8):1142–1153

    Article  Google Scholar 

  25. Lehane BM, O’Loughlin CD, Randolph MF, Gaudin C (2009) Rate effects on penetrometer resistance in kaolin. Géotechnique 59:41–52. doi:10.1680/geot.2007.00072

    Article  Google Scholar 

  26. Levadoux J, Baligh M (1986) Consolidation after undrained piezocone penetration. I: prediction. J Geotech Eng 112:707–726

    Article  Google Scholar 

  27. Lim L (2014) On the application of the material point method for offshore foundations. In: Hicks M, Brinkgreve RBJ, Rohe A (eds) Numerical methods geotechnical engineering. Taylor and Francis Group, London, pp 253–258

    Chapter  Google Scholar 

  28. Love E, Sulsky D (2005) An energy consistent material point method for dynamic finite deformation plasticity. Albuquerque, New Mexico

    MATH  Google Scholar 

  29. Lunne T, Robertson P, Powell J (1997) Cone penetration testing in geotechnical practice. Chapman-Hall, London

    Google Scholar 

  30. Mahmoodzadeh H, Randolph M (2014) Penetrometer Testing: effect of partial consolidation on subsequent dissipation response. J Geotech Geoenviron Eng 04014022:1–12. doi:10.1061/(ASCE)GT.1943-5606.0001114

    Google Scholar 

  31. Mahmoodzadeh H, Randolph M, Wang D (2014) Numerical simulation of piezocone dissipation test in clays. Geotechnique 64:657–666

    Article  Google Scholar 

  32. Mieremet MMJ, Stolle DF, Ceccato F, Vuik C (2015) Numerical stability for modelling of dynamic two-phase interaction. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2483

    Google Scholar 

  33. Oliveira JRMS, Almeida MSS, Motta HPG, Almeida MCF (2011) Influence of penetration rate on penetrometer resistance. J Geotech Geoenviron Eng 137:695–703. doi:10.1061/(ASCE)GT.1943-5606.0000480

    Article  Google Scholar 

  34. Phuong NTV, van Tol AF, Elkadi ASK, Rohe A (2016) Numerical investigation of pile installation effects in sand using material point method. Comput Geotech 73:58–71. doi:10.1016/j.compgeo.2015.11.012

    Article  Google Scholar 

  35. Randolph M, Hope S (2004) Effect of cone velocity on cone resistance and excess pore pressures. In: Proceedings of the international symposium engineering practice and performance of soft deposits

  36. Randolph M, Wroth C (1979) An analytical solution for the consolidation around a driven pile. Int J Numer Anal Methods Geomech 3:217–229

    Article  MATH  Google Scholar 

  37. Robertson P, Sully J, Woeller D, Lunne T, Powell J, Gillespie D (1992) Estimating coefficient of consolidation from piezocone tests. Can Geotech J 29:539–550

    Article  Google Scholar 

  38. Roscoe KH, Burland JB (1968) On the generalised stress–strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609

    Google Scholar 

  39. Schneider J, Lehane BM, Schnaid F (2007) Velocity effects on piezocone measurements in normally and over consolidated clays. Int J Phys Model Geotech 7:23–34

    Google Scholar 

  40. Silva MF, White DJ, Bolton MD (2006) An analytical study of the effect of penetration rate on piezocone tests in clay. Int J Numer Anal Methods Geomech 30(6):501–527

    Article  MATH  Google Scholar 

  41. Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273

    Article  Google Scholar 

  42. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  MathSciNet  MATH  Google Scholar 

  43. Teh C, Houlsby G (1991) An analytical study of the cone penetration test in clay. Geotechnique. doi:10.1016/0148-9062(91)91308-E

    Google Scholar 

  44. Torstensson BA (1977) The pore pressure probe. Nord Geotek Mote 34:1–34

    Google Scholar 

  45. Vaughan PR, Lemos LJL (2000) Clay–interface shear resistance. Géotechnique 50:55–64. doi:10.1680/geot.2000.50.1.55

    Article  Google Scholar 

  46. Vermeer PA, Yuan Y, Beuth L, Bonnier P (2009) Application of interface elements with the Material Point Method. In: Proceedings of the 18th international conference on computer methods in mechanics, vol 18. Polish Academy of Sciences, pp 477–478

  47. Wieckowski Z (2001) Analysis of granular flow by the Material Point Method. Eur Conf Comput Mech

  48. Wieckowski Z, Youn S, Yeon J (1999) A particle-in-cell solution to the silo discharging problem. Int J Numer Methods Eng 45:1203–1225

    Article  MATH  Google Scholar 

  49. Yerro A, Alonso E, Pinyol N (2013) The Material Point Method: a promising computational tool in geotechnics. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris, pp 853–856

  50. Yerro A, Alonso EE, Pinyol NM (2015) The material point method for unsaturated soils. Geotechnique 65:201–217

    Article  Google Scholar 

  51. Yi JT, Randolph MF, Goh SH, Lee FH (2012) A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Géotechnique 62:707–719. doi:10.1680/geot.8.P.155

    Article  Google Scholar 

  52. Zhang HW, Wang KP, Chen Z (2009) Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput Methods Appl Mech Eng 198:1456–1472. doi:10.1016/j.cma.2008.12.006

    Article  MATH  Google Scholar 

  53. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the MPM research group at Deltares, Delft, The Netherlands for the support during this work. Special thanks go to Prof. Pieter Vermeer, Dot. Lars Beuth, and Dot. Issam Jassim, for their help, without which this study would have been much more difficult.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Ceccato.

Appendices

Appendix 1: The two-phase MPM

The equations that describe the two-phase physics are: conservation of mass, conservation of momentum, and the constitutive relation. A detailed derivation of the equations presented in the following can be found in [53].

The momentum equation of the water phase is:

$$\rho_{\text{w}} \dot{\varvec{w}} + \frac{{n\gamma_{\text{w}} }}{k}\left( {\varvec{v} - \varvec{w}} \right) = \nabla p_{\text{w}} + \rho_{\text{w}} \varvec{g}$$
(13)

where v and w are the solid velocity and fluid velocity, respectively, ρ w and γ w are the density and the unit weight of the water, k is the Darcy’s permeability, n is the porosity, p w is the pore water pressure and g is the gravity vector. The second term on the left-hand side represents the interaction between solid and fluid.

The momentum equation for the mixture is:

$$\left( {1 - n} \right)\rho_{\text{s}} \dot{\varvec{v}} + n\rho_{\text{w}} \dot{\varvec{w}} = \nabla \cdot \left( {\varvec{\sigma}^{\prime } +\varvec{\delta}p_{\text{w}} } \right) + \rho_{\text{sat}} \varvec{g}$$
(14)

where ρ s is the density of the solid grains, ρ sat = n ρ w + (1 − n) ρ s is the saturated density, σ′ is the effective stress, and \(\varvec{\delta}= \left[ {1 1 1 0 0 0} \right]^{\text{T}}\).

The mass balance equation for the water phase gives the excess pore pressure increment:

$$\dot{p}_{w} = \frac{{K_{\text{w}} }}{n}\left[ {\left( {1 - n} \right)\nabla \cdot \varvec{v} + n\nabla \cdot \varvec{w}} \right]$$
(15)

where K w is the bulk modulus of the water. The effective stress increment is calculated with the soil constitutive model.

The boundary \(\partial \varOmega\) of the domain \(\varOmega\) occupied by the continuum must satisfy the following conditions:

$$\partial \varOmega = \partial \varOmega_{u} \cup \partial \varOmega_{\tau } = \partial \varOmega_{w} \cup \partial \varOmega_{p}$$
$$\partial \varOmega_{u} \cap \partial \varOmega_{\tau } = \emptyset \quad {\text{and}}\quad \partial \varOmega_{w} \cap \partial \varOmega_{p} = \emptyset$$

where \(\partial \varOmega_{w}\) and \(\partial \varOmega_{p}\) are the prescribed velocity and prescribed pressure boundaries of the water phase, respectively, whereas \(\partial \varOmega_{u}\) is the prescribed displacement (velocity) boundary of the solid phase and \(\partial \varOmega_{\tau }\) is the prescribed total stress boundary.

The space discretization of the governing equations is derived from the weak form of Eqs. (13) and (14) by means of the shape functions N. The same shape functions are used to approximate the velocity of the solid and fluid phase.

The momentum equation of the fluid can be written as:

$$\int\limits_{\varOmega } {\varvec{N}^{T} \rho_{\text{w}} \varvec{N}\dot{\varvec{w}}{\text{d}}\varOmega } = \int\limits_{{\partial \varOmega_{p} }} {\varvec{N}^{T} \bar{\varvec{p}}{\text{d}}S} - \mathop \int \limits_{\varOmega }^{{}} \varvec{B}^{T}\varvec{\delta}p_{\text{w}} {\text{d}}\varOmega + \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \rho_{\text{w}} \varvec{g}{\text{d}}\varOmega - \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \frac{{n\rho_{\text{w}} g}}{k}\varvec{N}\left( {\varvec{w} - \varvec{v}} \right){\text{d}}\varOmega$$
(16)

where now w and v are the nodal fluid velocity and nodal solid velocity respectively, \(\bar{\varvec{p}}\) is the applied pressure at the boundary, \(\varvec{B}^{T}\) is the matrix of the derivatives of the shape functions. Equation (1) is the matrix form of Eq. (16) where

$$\varvec{M}_{{\mathbf{w}}} = \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \rho_{\text{w}} \varvec{N}{\text{d}}\varOmega$$
(17)
$$\varvec{F}_{{\mathbf{w}}}^{{{\mathbf{ext}}}} = \mathop \int \limits_{{\partial \varOmega_{p} }}^{{}} \varvec{N}^{T} \bar{\varvec{p}}{\text{d}}S + \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \rho_{\text{w}} \varvec{g}{\text{d}}\varOmega$$
(18)
$$\varvec{F}_{{\mathbf{w}}}^{{{\mathbf{int}}}} = \mathop \int \limits_{\varOmega }^{{}} \varvec{B}^{T}\varvec{\delta}p{\text{d}}\varOmega$$
(19)
$$\varvec{F}_{{\mathbf{w}}}^{{{\mathbf{drag}}}} = \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \frac{{n\rho_{\text{w}} g}}{k}\varvec{N}\left( {\varvec{w} - \varvec{v}} \right){\text{d}}\varOmega$$
(20)

The momentum equation of the mixture can be written as:

$$\mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \left( {1 - n} \right)\rho_{\text{s}} \varvec{N}\dot{\varvec{v}}{\text{d}}\varOmega = - \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} n\rho_{\text{w}} \varvec{N}\dot{\varvec{w}}{\text{d}}\varOmega + \mathop \int \limits_{{\partial \varOmega_{\tau } }}^{{}} \varvec{N}^{T} \bar{\varvec{\tau }}{\text{d}}S + \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \rho_{\text{sat}} \varvec{g}{\text{d}}\varOmega - \mathop \int \limits_{\varOmega }^{{}} \varvec{B}^{T}\varvec{\sigma}{\text{d}}\varOmega$$
(21)

where \(\bar{\varvec{\tau }}\) is the vector of applied total stress. Equation (2) is the matrix form of Eq. (21), where

$$\varvec{M}_{{\mathbf{s}}} = \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \left( {1 - n} \right)\rho_{\text{s}} \varvec{N}{\text{d}}\varOmega$$
(22)
$$\bar{\varvec{M}}_{{\mathbf{w}}} = \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} n\rho_{\text{w}} \varvec{N}{\text{d}}\varOmega$$
(23)
$$\varvec{F}_{{}}^{{{\mathbf{ext}}}} = \mathop \int \limits_{{\partial \varOmega_{\tau } }}^{{}} \varvec{N}^{T} \bar{\varvec{\tau }}{\text{d}}S + \mathop \int \limits_{\varOmega }^{{}} \varvec{N}^{T} \rho_{{\text{sat}}} \varvec{g}{\text{d}}\varOmega$$
(24)
$$\varvec{F}_{{}}^{{{\mathbf{int}}}} = \mathop \int \limits_{\varOmega }^{{}} \varvec{B}^{T}\varvec{\sigma}{\text{d}}\varOmega$$
(25)

For convenience in numerical implementation, the lumped mass matrices are used [23].

The Euler–Cromer time integration scheme is adopted. The solution sequence of a single time step can be summarized in the following steps:

  1. 1.

    The momentum equations for the fluid (Eq. 1) and the mixture (Eq. 2) are initialized by mapping the quantities from the MP to the mesh nodes by means of interpolation functions.

  2. 2.

    Eq. (1) is solved for the fluid acceleration at time t

    $$\dot{\varvec{w}}^{t} = \varvec{M}_{{\mathbf{w}}}^{{\varvec{t} - 1}} \left[ {\varvec{F}_{{\mathbf{w}}}^{{{\mathbf{ext}},\varvec{t}}} - \varvec{F}_{{\mathbf{w}}}^{{{\mathbf{int}},\varvec{t}}} - \varvec{F}_{{\mathbf{w}}}^{{{\mathbf{drag}},\varvec{t}}} } \right]$$
    (26)
  3. 3.

    Eq. (2) is solved for the solid acceleration at time t

    $$\dot{\varvec{v}}^{t} = \varvec{M}_{{\mathbf{s}}}^{{\varvec{t} - 1}} \left[ { - \bar{\varvec{M}}_{{\mathbf{w}}}^{\varvec{t}} \dot{\varvec{w}}^{t} + \varvec{F}_{{}}^{{{\mathbf{ext}},\varvec{t}}} - \varvec{F}_{{}}^{{{\mathbf{int}},\varvec{t}}} } \right]$$
    (27)
  4. 4.

    The velocities of the MP are updated using nodal accelerations and interpolation functions:

    $$\varvec{w}_{p}^{{t +\Delta t}} = \varvec{w}_{p}^{t} + \mathop \sum \limits_{i = 1}^{{n_{e} }}\Delta tN_{i,p} \dot{\varvec{w}}^{t}$$
    (28)
    $$\varvec{v}_{p}^{{t +\Delta t}} = \varvec{v}_{\varvec{p}}^{\varvec{t}} + \mathop \sum \limits_{i = 1}^{{n_{e} }}\Delta tN_{i,p} \dot{\varvec{v}}^{\varvec{t}}$$
    (29)

    where n e is the number of nodes per element, \(N_{i,p}\) is the interpolation function of node i evaluated at the position of material point p, and Δt is the time increment

  5. 5.

    The nodal velocities w tt and v tt are then calculated from the updated MP momentum

  6. 6.

    Nodal velocities are integrated to get nodal incremental displacements: \(\Delta \varvec{u}^{{\varvec{t} +\Delta \varvec{t}}} =\Delta t\varvec{v}^{{\varvec{t} +\Delta \varvec{t}}}\)

  7. 7.

    Fluid and solid strains at MP are calculated as

    $$\Delta\varvec{\varepsilon}_{\text{w}}^{{t +\Delta t}} = \varvec{B}_{\varvec{p}}^{\varvec{t}}\Delta t\varvec{w}^{{\varvec{t} +\Delta \varvec{t}}} \quad {\text{and}}\quad\Delta\varvec{\varepsilon}_{\text{s}}^{{t +\Delta t}} = \varvec{B}_{\varvec{p}}^{\varvec{t}}\Delta t\varvec{v}^{{\varvec{t} +\Delta \varvec{t}}}$$
    (30)

    where \(\varvec{B}_{\varvec{p}}^{\varvec{t}}\) is the matrix of the derivative of the shape functions at the location of material point p.

  8. 8.

    Stresses are updated according to the constitutive relation

  9. 9.

    Water pressure at MP p is updated as:

    $$p_{w,p}^{{t +\Delta t}} = p_{w,p}^{t} +\Delta t\frac{{K_{w} }}{n}\left[ {\left( {1 - n} \right)\Delta\varvec{\varepsilon}_{{{\mathbf{vol}},\varvec{s}}}^{{\varvec{t} +\Delta \varvec{t}}} + n\Delta\varvec{\varepsilon}_{{{\mathbf{vol}},\varvec{w}}}^{{\varvec{t} +\Delta \varvec{t}}} } \right]$$
    (31)

    where \(\Delta\varvec{\varepsilon}_{{{\mathbf{vol}},\varvec{s}}}^{{\varvec{t} +\Delta \varvec{t}}}\) and \(\Delta\varvec{\varepsilon}_{{{\mathbf{vol}},\varvec{w}}}^{{\varvec{t} +\Delta \varvec{t}}}\) are the volumetric strains of solid and fluid, respectively.

  10. 10.

    The positions of MP are updated using the displacements of the solid phase

  11. 11.

    The book-keeping is updated using the new position of MP

Appendix 2: The contact algorithm

This appendix briefly summarizes the contact algorithm presented by Bardenhagen et al. [7] and its extension to the two-phase problem of cone penetration.

Let us consider two bodies, labelled A and B, in contact. The nodal velocities of the single body (v A , v B ) and the nodal velocity of the system of bodies (v S ) are predicted by solving the respective momentum equations. A node is identified as a contact node if the velocity of the single bodies differs from the one of the combined system. If so, the algorithm checks if the bodies are approaching or separating. If they are separating, there is no need for correction and the velocities correspond to the single-body velocities. Otherwise, the occurrence of sliding is checked.

The sliding condition is based on the contact forces. If the contact force is lower than the maximum value allowed by the contact law, the bodies stick to each other and the velocity is equal to the system velocity. If the bodies are sliding one respect to the other, then the single-body velocity is corrected in such a way that no interpenetration occurs and the contact force respects the Coulomb friction law.

The corrected nodal velocity at the contact node k, is calculated as:

$$\tilde{\varvec{v}}_{{\varvec{k},\varvec{A}}} = \varvec{v}_{{\varvec{k},\varvec{A}}} - \left[ {\left( {\varvec{v}_{{\varvec{k},\varvec{A}}} - \varvec{v}_{{\varvec{k},\varvec{S}}} } \right) \cdot \varvec{n}_{{\varvec{k},\varvec{A}}} } \right]\varvec{n}_{{\varvec{k},\varvec{A}}} + \left[ {\left( {\varvec{v}_{{\varvec{k},\varvec{A}}} - \varvec{v}_{{\varvec{k},\varvec{S}}} } \right) \cdot \varvec{n}_{{\varvec{k},\varvec{A}}} } \right]\mu \varvec{t}_{\varvec{k}}$$
(32)

where \(\varvec{v}_{{\varvec{k},\varvec{A}}}\) and \(\varvec{v}_{{\varvec{k},\varvec{S}}}\) are predicted velocity for the single body and the coupled system, respectively, \(\varvec{n}_{{\varvec{k},\varvec{A}}}\) is the outward normal vector to body A at the node k, \(\varvec{t}_{\varvec{k}}\) is the tangential vector, μ is the friction coefficient. The second term on the right-hand side represents the correction for the normal component in order to ensure no interpenetration. The third term represents the correction for the tangential component in order to respect the contact law. In the cone penetration problem, the system velocity coincides with the cone penetration velocity (prescribed velocity).

Once the corrected velocity has been computed, the corrected nodal acceleration is calculated:

$$\dot{\varvec{v}} = \frac{{\tilde{\varvec{v}}_{{\varvec{k},\varvec{A}}}^{{\varvec{t} + {\varvec{\Delta}}\varvec{t}}} - \tilde{\varvec{v}}_{{\varvec{k},\varvec{A}}}^{\varvec{t}} }}{{\Delta t}}$$
(33)

where the superscript t + Δt indicates the velocity computed by Eq. (32), and t indicates the velocity at the previous time step. The corrected nodal values are used to update the MP quantities (velocity, position, strain, stress and so on).

In the two-phase analyses, in addition to the solid velocity, also nodal water velocities and accelerations must be corrected in order to consider the interaction between the water phase and the impermeable structure.

The contact algorithm for the fluid phase is similar to the one presented above for the solid phase. In order to prevent the inflow of water into the cone, the normal component of the fluid velocity must be equal to the normal component of the cone velocity. The corrected velocity for the water at the contact node k takes the form:

$$\tilde{\varvec{w}}_{{\varvec{k},\varvec{A}}} = \varvec{w}_{{\varvec{k},\varvec{A}}} - \left[ {\left( {\varvec{w}_{{\varvec{k},\varvec{A}}} - \varvec{v}_{{\varvec{k},{\mathbf{cone}}}} } \right) \cdot \varvec{n}_{{\varvec{k},\varvec{A}}} } \right]\varvec{n}_{{\varvec{k},\varvec{A}}}$$
(34)

After recalculating the velocity of the contact node k at time t + Δt, the corrected acceleration vector at the node must be recalculated as:

$$\dot{\varvec{w}} = \frac{{\tilde{\varvec{w}}_{\varvec{k},\varvec{A}}^{{\varvec{t}} + {\varvec{\Delta}}\varvec{t}} - \tilde{\varvec{w}}_{{\varvec{k},\varvec{A}}}^{\varvec{t}} }}{{\Delta t}}$$
(35)

where \(\tilde{\varvec{w}}_{{\varvec{k},\varvec{A}}}^{{\varvec{t} + {\varvec{\Delta}}\varvec{t}}}\) is the velocity computed by Eq. (34) and \(\tilde{\varvec{w}}_{{\varvec{k},\varvec{A}}}^{\varvec{t}}\) is the water velocity at the previous time step. The corrected water acceleration is used in the momentum equation for the mixture (Eq. 2), which is solved to obtain the acceleration of the solid phase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccato, F., Simonini, P. Numerical study of partially drained penetration and pore pressure dissipation in piezocone test. Acta Geotech. 12, 195–209 (2017). https://doi.org/10.1007/s11440-016-0448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0448-6

Keywords

Navigation