Skip to main content
Log in

Hierarchical structure engineering of brookite TiO2 crystals for enhanced photocatalytic and external antitumor property

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

Here we report a hydrothermal approach to build and tailor the hierarchical structure of brookite TiO2 crystal under multiple hierarchical scales. Benefiting from the hierarchical structure and the existence of oxygen vacancy, these as-prepared hierarchical brookite TiO2 crystals can not only enhance photocatalytic activity, but also demonstrate their potential in the treatment of superficial malignant tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma FX, Hu H, Wu HB et al (2015) Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 27:4097–4101

    Article  Google Scholar 

  2. Fang WQ, Zhou JZ, Liu J et al (2011) Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by 001 facets. Chem Eur J 17:1423–1427

    Article  Google Scholar 

  3. Zhang Y, Sun WP, Rui XH et al (2015) One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 11:3694–3702

    Article  Google Scholar 

  4. Xiong T, Dong F, Wu ZB et al (2014) Enhanced extrinsic absorption promotes the visible light photocatalytic activity of wide band-gap (BiO)2CO3 hierarchical structure. RSC Adv 4:56307–56312

    Article  Google Scholar 

  5. Huo YN, Zhang J, Miao M et al (2015) Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances. Appl Catal B Environ 111:334–341

    Google Scholar 

  6. Tian GH, Chen YJ, Zhou W et al (2011) Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J Mater Chem 21:887–892

    Article  Google Scholar 

  7. Jun YS, Lee EZ, Wang XC et al (2013) From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater 23:3661–3667

    Article  Google Scholar 

  8. Tay QL, Liu XF, Tang YX et al (2013) Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures. J Phys Chem C 117:14973–14982

    Article  Google Scholar 

  9. Zhao ML, Li LP, Lin HF et al (2013) A facile strategy to fabricate large-scale uniform brookite TiO2 nanospindles with high thermal stability and superior electrical properties. Chem Commun 49:7046–7048

    Article  Google Scholar 

  10. Zhao HL, Liu LJ, Andino JM et al (2013) Bicrystalline TiO2 with controllable anatase-brookite phase content for enhanced CO2 photoreduction to fuels. J Mater Chem A 1:8209–8216

    Article  Google Scholar 

  11. Ohno T, Higo T, Murakami N et al (2014) Photocatalytic reduction of CO2 over exposed-crystal-face-controlled TiO2 nanorod having a brookite phase with co-catalyst loading. Appl Catal B Environ 152:309–316

    Article  Google Scholar 

  12. Zhu GL, Lin TQ, Lu XJ et al (2013) Black brookite titania with high solar absorption and excellent photocatalytic performance. J Mater Chem A 1:9650–9653

    Article  Google Scholar 

  13. Buonsanti R, Grillo V, Carlino E et al (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc 130:11223–11233

    Article  Google Scholar 

  14. Lin HF, Li LP, Zhao ML et al (2012) Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 10:8328–8332

    Article  Google Scholar 

  15. Li K, Xu JL, Shi WY et al (2012) Synthesis of size controllable and thermally stable rice-like brookite titania and its application as a scattering layer for nano-sized titania film-based dye-sensitized solar cells. J Mater Chem A 2:1886–1896

    Article  Google Scholar 

  16. Yang ZW, Wang B, Cui H et al (2015) Synthesis of crystal-controlled TiO2 nanorods by a hydrothermal method: rutile and brookite as highly active photocatalysts. J Phys Chem C 119:16905–16912

    Article  Google Scholar 

  17. Wu L, Xing J, Hou Y et al (2013) Fabrication of regular ZnO/TiO2 heterojunctions with enhanced photocatalytic properties. Chem Eur J 19:8393–8396

    Article  Google Scholar 

  18. Tian J, Hu XL, Yang HR et al (2016) High yield production of reduced TiO2 with enhanced photocatalytic activity. Appl Surface Sci 360:738–743

    Article  Google Scholar 

  19. Chen Y, Li WZ, Wang JY et al (2012) Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl Catal B Environ 191:94–105

    Article  Google Scholar 

  20. Wang J, Tafen DN, Lewis JP et al (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    Article  Google Scholar 

  21. Li NX, Liu MC, Zhou ZH et al (2014) Charge separation in facet-engineered chalcogenide photocatalyst: a selective photocorrosion approach. Nanoscale 6:9695–9702

    Article  Google Scholar 

  22. Deng SZ, Tjoa V, Fan HM et al (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134:4905–4917

    Article  Google Scholar 

  23. Hu WB, Li LP, Li GS et al (2009) High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Des 9:3676–3682

    Article  Google Scholar 

  24. Wang W, Lin JP, Cai CH et al (2015) Optical properties of amphiphilic copolymer-based self-assemblies. Eur Polym J 65:112–131

    Article  Google Scholar 

  25. Li YL, Jiang T, Lin SL et al (2015) Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers. Sci Rep 5:10137

    Article  Google Scholar 

  26. Yang MH, Chen PC, Tsai MC et al (2014) Anatase and brookite TiO2 with various morphologies and their proposed building block. CrystEngComm 16:441–447

    Article  Google Scholar 

  27. Zhao B, Chen F, Huang QW et al (2009) Brookite TiO2 nanoflowers. Chem Commun (34):5115–5117

  28. Kang Q, Cao JY, Zhang YJ et al (2013) Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J Mater Chem A 1:5766–5774

    Article  Google Scholar 

  29. Duan JX, Hou HY, Liu XX et al (2016) In situ Ti3+-doped TiO2 nanotubes anode for lithium ion battery. J Porous Mater 23:837–843

    Article  Google Scholar 

  30. Yang HG, Liu G, Qiao SZ et al (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J Am Chem Soc 131:4078–4083

    Article  Google Scholar 

  31. Li X, Yu JG, Jaroniec M et al (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636

    Article  Google Scholar 

  32. Dong BT, Zhou H, Liang J et al (2014) One-step synthesis of free-standing Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors. Nanotechnology 25:435403

    Article  Google Scholar 

  33. Liu G, Wang LZ, Yang HG et al (2010) Titania-based photocatalysts-crystal growth, doping and heterostructuring. J Mater Chem 20:831–843

    Article  Google Scholar 

  34. Li YH, Zhang X, Zhang Q et al (2016) Activity and kinetics of ruthenium supported catalysts for sodium borohydride hydrolysis to hydrogen. RSC Adv 6:29371–29377

    Article  Google Scholar 

  35. Yang WL, Zhang L, Hu Y et al (2012) Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew Chem Int Ed 51:11501–11504

    Article  Google Scholar 

  36. Yang S, Huang N, Jin YM et al (2015) Crystal shape engineering of anatase TiO2 and its biomedical applications. CrystEngComm 17:6617–6631

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21573068), Program of Shanghai Subject Chief Scientist (15XD1501300), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Fundamental Research Funds for the Central Universities (WD1313009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changquan Ling or Huagui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2823 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Su, Y., Yang, S. et al. Hierarchical structure engineering of brookite TiO2 crystals for enhanced photocatalytic and external antitumor property. Sci. Bull. 61, 1818–1825 (2016). https://doi.org/10.1007/s11434-016-1199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1199-3

Keywords

Navigation