Skip to main content
Log in

Variation in entrainment rate and relationship with cloud microphysical properties on the scale of 5 m

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

This paper focuses on the variability in entrainment rate in individual cumulus clouds using the entrainment rate estimated on the scale of 5 m in 186 shallow cumulus clouds from eight aircraft flights, using in situ observations from the RACORO field campaign (the routine atmospheric radiation measurement aerial facility clouds with low optical water depths optical radiative observations) over the atmospheric radiation measurement Southern Great Plains site, USA. The result shows that the mean entrainment rate of all the 186 clouds systematically decreases from the cloud edge to the cloud center. Further analysis of the fluctuation of entrainment rate shows that the probability density function of entrainment rate in each flight can be fitted by the lognormal, gamma, or Weibull distributions virtually equally well, with the Weibull distribution being the best. The parameter “standard deviation” in the lognormal distribution is weakly negatively correlated, and the other parameters in the three distributions are positively correlated with relative humidity in the entrained dry air and dilution effect, respectively. Entrainment rate is negatively correlated with droplet concentration, droplet size, and liquid water content, but positively correlated with relative dispersion. The effect of entrainment rate on the spectral shape of cloud droplet size distribution is examined and linked to the systems theory on the cloud droplet size distribution.

摘要

云在全球辐射平衡和气候变化中起着重要作用。气候模式中的积云参数化方案影响降水和气候等的数值模拟研究。夹卷率是积云参数化中一个重要的物理量,但夹卷率的估算存在很大的不确定性,关于夹卷率概率密度分布函数的观测研究鲜有报道。本文利用积云飞机观测资料,发现从云的边界到云的中心,夹卷率递减。夹卷率的概率密度分布函数可以用对数正态分布、伽玛分布或者威布尔分布拟合,其中威布尔分布的效果最好。夹卷率与云滴数浓度、半径和含水量负相关,与离散度正相关。夹卷率对云滴谱的影响显著,总体而言,这与云滴谱的系统理论是一致的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Z, Zhang H, Lu P (2014) Improvement of cloud microphysics in the aerosol-climate model BCC_AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect effect. J Geophys Res 119:8400–8417

    Google Scholar 

  2. Zhang H, Jing X, Li J (2014) Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geosci Model Dev 7:737–754

    Article  Google Scholar 

  3. Ma J, Guo X, Zhao C et al (2007) Recent progress in cloud physics research in China. Adv Atmos Sci 24:1121–1137

    Article  Google Scholar 

  4. Lei H, Hong Y, Zhao Z et al (2008) Advances in cloud and precipitation physics and weather modification in recent years. Chin J Atmos Sci 32:967–974 (in Chinese)

    Google Scholar 

  5. Zhang D, Luo T, Liu D et al (2014) Spatial scales of altocumulus clouds observed with collocated CALIPSO and CloudSat measurements. Atmos Res 149:58–69

    Article  Google Scholar 

  6. Zhang F, Li J (2013) Doubling–adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J Atmos Sci 70:3084–3101

    Article  Google Scholar 

  7. Guo X, Fu D, Li X et al (2015) Advances in cloud physics and weather modification in China. Adv Atmos Sci 32:230–249

    Article  Google Scholar 

  8. Lin Y, Zhao M, Ming Y et al (2013) Precipitation partitioning, tropical clouds, and intraseasonal variability in GFDL AM2. J Clim 26:5453–5466

    Article  Google Scholar 

  9. Zhang GJ, Song X (2009) Interaction of deep and shallow convection is key to Madden–Julian Oscillation simulation. Geophys Res Lett 36:L09708

    Google Scholar 

  10. Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon Weather Rev 135:567–585

    Article  Google Scholar 

  11. Ping F, Gao S, Wang H (2003) Development and improvement of mass flux convection parameterization scheme and its applications in the seasonal climate predication model. Chin Sci Bull 48:1006–1015

    Article  Google Scholar 

  12. Huang Q, Yao S, Zhang Y (2009) Uncertainties of cumulus convective parameterization schemes over East Asia in RegCM3. In: 2009 sixth international conference on fuzzy systems and knowledge discovery. Tianjin, China

  13. Wu T (2012) A mass–flux cumulus parameterization scheme for large-scale models: description and test with observations. Clim Dyn 38:725–744

    Article  Google Scholar 

  14. Wang X, Zhang M (2014) Vertical velocity in shallow convection for different plume types. J Adv Model Earth Syst 6:478–489

    Article  Google Scholar 

  15. Liu Y, Daum PH, Chai SK et al (2002) Cloud parameterizations, cloud physics, and their connections: an overview. Recent Res Dev Geophys 4:119–142

    Google Scholar 

  16. Xue H, Feingold G (2006) Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J Atmos Sci 63:1605–1622

    Article  Google Scholar 

  17. Lu C, Liu Y, Niu S (2013) A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds. Chin Sci Bull 58:545–551

    Article  Google Scholar 

  18. Lu C, Liu Y, Niu S (2011) Examination of turbulent entrainment-mixing mechanisms using a combined approach. J Geophys Res 116:D20207

    Article  Google Scholar 

  19. Stommel H (1947) Entrainment of air into a cumulus cloud. J Meteorol 4:91–94

    Article  Google Scholar 

  20. Betts AK (1975) Parametric interpretation of trade-wind cumulus budget studies. J Atmos Sci 32:1934–1945

    Article  Google Scholar 

  21. de Rooy WC, Siebesma AP (2008) A simple parameterization for detrainment in shallow cumulus. Mon Weather Rev 136:560–576

    Article  Google Scholar 

  22. Del Genio AD, Wu J (2010) The role of entrainment in the diurnal cycle of continental convection. J Clim 23:2722–2738

    Article  Google Scholar 

  23. Raga GB, Jensen JB, Baker MB (1990) Characteristics of cumulus band clouds off the coast of Hawaii. J Atmos Sci 47:338–356

    Article  Google Scholar 

  24. Neggers RAJ, Duynkerke PG, Rodts SMA (2003) Shallow cumulus convection: a validation of large-eddy simulation against aircraft and Landsat observations. Q J R Meteor Soc 129:2671–2696

    Article  Google Scholar 

  25. Gerber HE, Frick GM, Jensen JB et al (2008) Entrainment, mixing, and microphysics in trade-wind cumulus. J Meteorol Soc Jpn 86A:87–106

    Article  Google Scholar 

  26. Jensen MP, Del Genio AD (2006) Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J Clim 19:2105–2117

    Article  Google Scholar 

  27. Wagner TJ, Turner DD, Berg LK et al (2013) Ground-based remote retrievals of cumulus entrainment rates. J Atmos Ocean Tech 30:1460–1471

    Article  Google Scholar 

  28. Romps DM (2010) A direct measure of entrainment. J Atmos Sci 67:1908–1927

    Article  Google Scholar 

  29. Dawe JT, Austin PH (2011) Interpolation of LES cloud surfaces for use in direct calculations of entrainment and detrainment. Mon Weather Rev 139:444–456

    Article  Google Scholar 

  30. Dawe JT, Austin PH (2013) Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmos Chem Phys 13:7795–7811

    Article  Google Scholar 

  31. McCarthy J (1974) Field verification of the relationship between entrainment rate and cumulus cloud diameter. J Atmos Sci 31:1028–1039

    Article  Google Scholar 

  32. de Rooy WC, Bechtold P, Fröhlich K et al (2013) Entrainment and detrainment in cumulus convection: an overview. Q J R Meteor Soc 139:1–19

    Article  Google Scholar 

  33. Romps DM, Kuang Z (2010) Nature versus nurture in shallow convection. J Atmos Sci 67:1655–1666

    Article  Google Scholar 

  34. Böing SJ, Jonker HJJ, Nawara WA et al (2013) On the deceiving aspects of mixing diagrams of deep cumulus convection. J Atmos Sci 71:56–68

    Article  Google Scholar 

  35. Lu C, Liu Y, Niu S et al (2012) Lateral entrainment rate in shallow cumuli: dependence on dry air sources and probability density functions. Geophys Res Lett 39:L20812

    Google Scholar 

  36. Vogelmann AM, McFarquhar GM, Ogren JA et al (2012) RACORO extended-term aircraft observations of boundary layer clouds. Bull Am Meteorol Soc 93:861–878

    Article  Google Scholar 

  37. Lu C, Liu Y, Niu S et al (2012) Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects. Geophys Res Lett 39:L21808

    Google Scholar 

  38. Lu C, Liu Y, Niu S et al (2013) Empirical relationship between entrainment rate and microphysics in cumulus clouds. Geophys Res Lett 40:2333–2338

    Article  Google Scholar 

  39. Zhang Q, Quan J, Tie X et al (2011) Impact of aerosol particles on cloud formation: aircraft measurements in China. Atmos Environ 45:665–672

    Article  Google Scholar 

  40. Baumgardner D, Johnson H, Dawson W et al (2001) The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations. Atmos Res 59–60:251–264

    Article  Google Scholar 

  41. Diskin GS, Podolske JR, Sachse GW, et al (2002) Open-path airborne tunable diode laser hygrometer. In: Proceedings of SPIE. Seattle, WA, USA

  42. Podolske JR, Sachse GW, Diskin GS (2003) Calibration and data retrieval algorithms for the NASA Langley/Ames diode laser hygrometer for the NASA transport and chemical evolution over the Pacific (TRACE-P) mission. J Geophys Res 108:8792

    Article  Google Scholar 

  43. Lu C, Liu Y, Yum SS et al (2012) A new approach for estimating entrainment rate in cumulus clouds. Geophys Res Lett 39:L04802

    Google Scholar 

  44. Lehmann K, Siebert H, Shaw RA (2009) Homogeneous and inhomogeneous mixing in cumulus clouds: dependence on local turbulence structure. J Atmos Sci 66:3641–3659

    Article  Google Scholar 

  45. Krueger SK (2008) Fine-scale modeling of entrainment and mixing of cloudy and clear air. In: The 15th international conference on clouds and precipitation. Cancun, Mexico

  46. Lu C, Liu Y, Niu S et al (2013) Exploring parameterization for turbulent entrainment-mixing processes in clouds. J Geophys Res 118:185–194

    Google Scholar 

  47. Wang Y, Geerts B, French J (2009) Dynamics of the cumulus cloud margin: an observational study. J Atmos Sci 66:3660–3677

    Article  Google Scholar 

  48. Guo X, Zheng G (2009) Advances in weather modification from 1997 to 2007 in China. Adv Atmos Sci 26:240–252

    Article  Google Scholar 

  49. Hu Z, Lei H, Guo X et al (2007) Studies of the structure of a stratiform cloud and the physical processes of precipitation formation. Chin J Atmos Sci 31:425–439 (in Chinese)

    Google Scholar 

  50. Liu Y, Daum PH (2000) Which size distribution function to use for studies related to effective radius. In: Proceedings of the 13th international conference on clouds and precipitation. Reno, NV, US

  51. Haman KE, Malinowski SP, Kurowski MJ et al (2007) Small scale mixing processes at the top of a marine stratocumulus—a case study. Q J R Meteor Soc 133:213–226

    Article  Google Scholar 

  52. Lu C, Liu Y, Niu S (2014) Entrainment-mixing parameterization in shallow cumuli and effects of secondary mixing events. Chin Sci Bull 59:896–903

    Article  Google Scholar 

  53. Liu Y (1995) On the generalized theory of atmospheric particle systems. Adv Atmos Sci 12:419–438

    Article  Google Scholar 

  54. Liu Y, You L, Yang W et al (1995) On the size distribution of cloud droplets. Atmos Res 35:201–216

    Article  Google Scholar 

  55. Liu Y (1997) On the unified theory of atmospheric particle systems part II: self-affine particles. Adv Atmos Sci 14:369–388

    Article  Google Scholar 

  56. Liu Y, Hallett J (1997) The “1/3” power law between effective radius and liquid-water content. Q J R Meteor Soc 123:1789–1795

    Google Scholar 

  57. Liu Y, Hallett J (1998) On size distributions of cloud droplets growing by condensation: a new conceptual model. J Atmos Sci 55:527–536

    Article  Google Scholar 

  58. Liu Y, Daum PH, Hallett J (2002) A generalized systems theory for the effect of varying fluctuations on cloud droplet size distributions. J Atmos Sci 59:2279–2290

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41305120, 91337215); the Research Foundation for Environmental Protection of Jiangsu Province (2013042); the Natural Science Foundation of Jiangsu Province, China (BK20130988); the Specialized Research Foundation for the Doctoral Program of Higher Education (20133228120002); the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (13KJB170014); China Meteorological Administration Special Public Welfare Research Foundation (GYHY201406007); the Open Funding from State Key Laboratory of Severe Weather (2013LASW-B06); the Open Funding from Key Laboratory of Meteorological Disaster of Ministry of Education, China (KLME1305); the Qing Lan Project; a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions; the US Department of Energy’s (DOE) Earth System Modeling (ESM) program via the FASTER project (www.bnl.gov/faster) and Atmospheric System Research (ASR) Program. Data used in this article are from the US Department of Energy ARM Aerial Facility’s RACORO Campaign. We appreciate the helpful discussions about the data with Drs. Andrew Vogelmann, Gunnar Senum, Seong Soo Yum, Haf Jonsson, Greg McFarquhar, and Hee-Jung Yang. We also appreciate Dr. Glenn Diskin’s help on the data from DLH.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsong Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Lu, C. & Liu, Y. Variation in entrainment rate and relationship with cloud microphysical properties on the scale of 5 m. Sci. Bull. 60, 707–717 (2015). https://doi.org/10.1007/s11434-015-0737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0737-8

Keywords

Navigation