Skip to main content
Log in

Investigation of the effect of quantum measurement on parity-time symmetry

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Symmetry, including the parity-time (PT)-symmetry, is a striking topic, widely discussed and employed in many fields. It is well-known that quantum measurement can destroy or disturb quantum systems. However, can and how does quantum measurement destroy the symmetry of the measured system? To answer the pertinent question, we establish the correlation between the quantum measurement and Floquet PT-symmetry and investigate for the first time how the measurement frequency and measurement strength affect the PT-symmetry of the measured system using the 40Ca+ ion. It is already shown that the measurement at high frequencies would break the PT symmetry. Notably, even for an inadequately fast measurement frequency, if the measurement strength is sufficiently strong, the PT symmetry breaking can occur. The current work can enhance our knowledge of quantum measurement and symmetry and may inspire further research on the effect of quantum measurement on symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pokorski, Gauge Field Theories, 2nd ed. (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  2. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998), arXiv: physics/9712001.

    Article  ADS  MathSciNet  Google Scholar 

  3. Y. Ashida, Z. Gong, and M. Ueda, arXiv: 2006.01837.

  4. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys. 14, 11 (2018).

    Article  Google Scholar 

  5. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18, 783 (2019).

    Article  ADS  Google Scholar 

  6. C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002), arXiv: quant-ph/0208076.

    Article  MathSciNet  Google Scholar 

  7. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007), arXiv: hepth/0703096.

    Article  ADS  Google Scholar 

  8. M. A. Miri, and A. Alù, Science 363, eaar7709 (2019).

    Article  Google Scholar 

  9. F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, Phys. Rev. A 100, 062131 (2019), arXiv: 1909.11619.

    Article  ADS  Google Scholar 

  10. L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Science 346, 972 (2014).

    Article  ADS  Google Scholar 

  11. B. Peng, S. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, Science 346, 328 (2014), arXiv: 1410.7474.

    Article  ADS  Google Scholar 

  12. W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, Nature 548, 192 (2017).

    Article  ADS  Google Scholar 

  13. S. Scheel, and A. Szameit, Europhys. Lett. 122, 34001 (2018), arXiv: 1805.10876.

    Article  ADS  Google Scholar 

  14. Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. K. Duan, X. Rong, and J. Du, Science 364, 878 (2019), arXiv: 1812.05226.

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Nat. Phys. 15, 1232 (2019), arXiv: 1901.07968.

    Article  Google Scholar 

  16. W. C. Wang, Y. L. Zhou, H. L. Zhang, J. Zhang, M. C. Zhang, Y. Xie, C. W. Wu, T. Chen, B. Q. Ou, W. Wu, H. Jing, and P. X. Chen, Phys. Rev. A 103, L020201 (2021), arXiv: 2006.16467.

    Article  ADS  Google Scholar 

  17. C. Zheng, L. Hao, and G. L. Long, Phil. Trans. R. Soc. A. 371, 20120053 (2013), arXiv: 1105.6157.

    Article  ADS  Google Scholar 

  18. Y. N. Joglekar, R. Marathe, P. Durganandini, and R. K. Pathak, Phys. Rev. A 90, 040101 (2014), arXiv: 1407.4535.

    Article  ADS  Google Scholar 

  19. T. E. Lee, and Y. N. Joglekar, Phys. Rev. A 92, 042103 (2015), arXiv: 1508.07001.

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Nat. Commun. 10, 855 (2019).

    Article  ADS  Google Scholar 

  21. J. von Neumann, Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, 2018).

    Book  Google Scholar 

  22. A. Peres, Am. J. Phys. 48, 931 (1980).

    Article  ADS  Google Scholar 

  23. B. Misra, and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

    Article  ADS  Google Scholar 

  24. C. B. Chiu, E. C. G. Sudarshan, and B. Misra, Phys. Rev. D 16, 520 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Nakazato, M. Namiki, S. Pascazio, and H. Rauch, Phys. Lett. A 217, 203 (1996).

    Article  ADS  Google Scholar 

  26. Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).

    Article  ADS  Google Scholar 

  27. C. W. Wu, J. Zhang, Y. Xie, B. Q. Ou, T. Chen, W. Wu, and P. X. Chen, Phys. Rev. A 100, 062111 (2019), arXiv: 1811.06170.

    Article  ADS  Google Scholar 

  28. A. Feizpour, X. Xing, and A. M. Steinberg, Phys. Rev. Lett. 107, 133603 (2011), arXiv: 1101.0199.

    Article  ADS  Google Scholar 

  29. A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, Phys. Rev. X 4, 011031 (2014), arXiv: 1309.5011.

    Google Scholar 

  30. Y. Pan, J. Zhang, E. Cohen, C. Wu, P. X. Chen, and N. Davidson, Nat. Phys. 16, 1206 (2020), arXiv: 1910.11684.

    Article  Google Scholar 

  31. T. Chen, W. Gou, D. Xie, T. Xiao, W. Yi, J. Jing, and B. Yan, npj Quantum Inf. 7, 78 (2021), arXiv: 2009.01419.

    Article  ADS  Google Scholar 

  32. P. Facchi, G. Marmo, and S. Pascazio, J. Phys.-Conf. Ser. 196, 012017 (2009), arXiv: 0711.4280.

    Article  Google Scholar 

  33. G. J. Milburn, J. Opt. Soc. Am. B 5, 1317 (1988).

    Article  ADS  Google Scholar 

  34. L. S. Schulman, Phys. Rev. A 57, 1509 (1998).

    Article  ADS  Google Scholar 

  35. C. Balzer, R. Huesmann, W. Neuhauser, and P. E. Toschek, Opt. Commun. 180, 115 (2000).

    Article  ADS  Google Scholar 

  36. E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett. 97, 260402 (2006), arXiv: cond-mat/0606430.

    Article  ADS  Google Scholar 

  37. A. Peres, Phys. Rev. D 39, 2943 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Peres, and A. Ron, Phys. Rev. A 42, 5720 (1990).

    Article  ADS  Google Scholar 

  39. R. J. Cook, Phys. Scr. T21, 49 (1988).

    Article  ADS  Google Scholar 

  40. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).

    Article  ADS  Google Scholar 

  41. C. E. Creffield, Phys. Rev. B 67, 165301 (2003), arXiv: condmat/0301168.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Xing Chen.

Additional information

This work was supported by the National Basic Research Program of China (Grant No. 2016YFA0301903), and the National Natural Science Foundation of China (Grant Nos. 12074433, 12004430, 12174447, 12174448, and 11904402).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WC., Xie, Y., Zhang, MC. et al. Investigation of the effect of quantum measurement on parity-time symmetry. Sci. China Phys. Mech. Astron. 65, 260313 (2022). https://doi.org/10.1007/s11433-022-1895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1895-y

Keywords

Navigation