Skip to main content
Log in

Acoustic topological adiabatic passage via a level crossing

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Stimulated adiabatic passage has been extensively studied to achieve robust and selective population transfer in quantum systems. Recently, the quantum-classic analogy has been rapidly developing and can be considered responsible for the implementation of the adiabatic transfer of sound energy in cavity chain systems. In this article, we investigate the adiabatic transfer of sound energy between two topological end states in the Su-Schrieffer-Heeger (SSH) cavity chain, which can be considered to be the acoustic analog of the quantum chirped-pulse excitation. The topological adiabatic passage in SSH cavity chain has two categories. When the single-cavity resonance frequencies on the sublattices A and B in the SSH cavity chain do not switch their spectrum positions, the topologically protected adiabatic evolution results in the returning passage of the sound excited in one end cavity. When a level crossing with single-cavity resonance frequencies on the sublattices A and B exhibits switch in the frequency spectrum, acoustic energy is observed to be topologically pumped between the two end cavities of the SSH chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, J. Chem. Phys. 92, 5363 (1990).

    Article  ADS  Google Scholar 

  2. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

    Article  ADS  Google Scholar 

  3. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).

    Article  ADS  Google Scholar 

  4. C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, Phys. Rev. A 87, 013806 (2013).

    Article  ADS  Google Scholar 

  5. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017), arXiv: 1605.00224.

    Article  ADS  Google Scholar 

  6. K. Bergmann, H. C. Nägerl, C. Panda, G. Gabrielse, E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann, S. Ospelkaus, A. Kuhn, S. Longhi, A. Szameit, P. Pirro, B. Hillebrands, X. F. Zhu, J. Zhu, M. Drewsen, W. K. Hensinger, S. Weidt, T. Halfmann, H. L. Wang, G. S. Paraoanu, N. V. Vitanov, J. Mompart, T. Busch, T. J. Barnum, D. D. Grimes, R. W. Field, M. G. Raizen, E. Narevicius, M. Auzinsh, D. Budker, A. Pálffy, and C. H. Keitel, J. Phys. B-At. Mol. Opt. Phys. 52, 202001 (2019), arXiv: 1908.01611.

    Article  ADS  Google Scholar 

  7. B. Broers, H. B. van Linden van den Heuvell, and L. D. Noordam, Phys. Rev. Lett. 69, 2062 (1992).

    Article  ADS  Google Scholar 

  8. S. Chelkowski, and G. N. Gibson, Phys. Rev. A 52, R3417 (1995).

    Article  ADS  Google Scholar 

  9. D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, Chem. Phys. Lett. 290, 75 (1998).

    Article  ADS  Google Scholar 

  10. J. Karczmarek, J. Wright, P. Corkum, and M. Ivanov, Phys. Rev. Lett. 82, 3420 (1999).

    Article  ADS  Google Scholar 

  11. J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and W. S. Warren, Phys. Rev. Lett. 68, 2000 (1992).

    Article  ADS  Google Scholar 

  12. L. S. Goldner, C. Gerz, R. J. C. Spreeuw, S. L. Rolston, C. I. Westbrook, W. D. Phillips, P. Marte, and P. Zoller, Phys. Rev. Lett. 72, 997 (1994).

    Article  ADS  Google Scholar 

  13. T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H. C. Nägerl, Phys. Rev. Lett. 113, 205301 (2014), arXiv: 1405.6037.

    Article  ADS  Google Scholar 

  14. M. Guo, B. Zhu, B. Lu, X. Ye, F. Wang, R. Vexiau, N. Bouloufa-Maafa, G. Quéméner, O. Dulieu, and D. Wang, Phys. Rev. Lett. 116, 205303 (2016), arXiv: 1602.03947.

    Article  ADS  Google Scholar 

  15. D. Møller, L. B. Madsen, and K. Mølmer, Phys. Rev. A 77, 022306 (2008), arXiv: 0710.0450.

    Article  ADS  Google Scholar 

  16. B. Rousseaux, S. Guérin, and N. V. Vitanov, Phys. Rev. A 87, 032328 (2013).

    Article  ADS  Google Scholar 

  17. J. Klein, F. Beil, and T. Halfmann, Phys. Rev. Lett. 99, 113003 (2007).

    Article  ADS  Google Scholar 

  18. D. A. Golter, and H. Wang, Phys. Rev. Lett. 112, 116403 (2014).

    Article  ADS  Google Scholar 

  19. H. K. Xu, C. Song, W. Y. Liu, G. M. Xue, F. F. Su, H. Deng, Y. Tian, D. N. Zheng, S. Han, Y. P. Zhong, H. Wang, Y. X. Liu, and S. P. Zhao, Nat. Commun. 7, 11018 (2016), arXiv: 1508.01849.

    Article  ADS  Google Scholar 

  20. F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut, and P. O. Schmidt, Phys. Rev. Lett. 115, 053003 (2015), arXiv: 1504.03139.

    Article  ADS  Google Scholar 

  21. C. D. Panda, B. R. O’Leary, A. D. West, J. Baron, P. W. Hess, C. Hoffman, E. Kirilov, C. B. Overstreet, E. P. West, D. DeMille, J. M. Doyle, and G. Gabrielse, Phys. Rev. A 93, 052110 (2016).

    Article  ADS  Google Scholar 

  22. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, Phys. Rev. B 76, 201101 (2007), arXiv: 0709.3050.

    Article  ADS  Google Scholar 

  23. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, Opt. Lett. 34, 2405 (2009).

    Article  ADS  Google Scholar 

  24. R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, Rep. Prog. Phys. 79, 074401 (2016), arXiv: 1602.06658.

    Article  ADS  Google Scholar 

  25. Y. X. Shen, Y. G. Peng, D. G. Zhao, X. C. Chen, J. Zhu, and X. F. Zhu, Phys. Rev. Lett. 122, 094501 (2019).

    Article  ADS  Google Scholar 

  26. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  27. D. J. Thouless, Phys. Rev. B 27, 6083 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters (Springer-Verlag, Berlin, 2012).

    Book  Google Scholar 

  29. J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators: Lecture Notes in Physics (Springer, Cham, 2016).

    Book  Google Scholar 

  30. Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H. Jia, and X. F. Zhu, Nat. Commun. 7, 13368 (2016), arXiv: 1508.06243.

    Article  ADS  Google Scholar 

  31. Y. G. Peng, Y. X. Shen, D. G. Zhao, and X. F. Zhu, Appl. Phys. Lett. 110, 173505 (2017).

    Article  ADS  Google Scholar 

  32. X. Zhang, M. Xiao, Y. Cheng, M. H. Lu, and J. Christensen, Commun. Phys. 1, 97 (2018), arXiv: 1807.09544.

    Article  Google Scholar 

  33. Z. G. Geng, Y. G. Peng, Y. X. Shen, D. G. Zhao, and X. F. Zhu, J. Phys.-Condens. Matter 30, 345401 (2018).

    Article  Google Scholar 

  34. Z. G. Geng, Y. G. Peng, Y. X. Shen, D. G. Zhao, and X. F. Zhu, Appl. Phys. Lett. 113, 033503 (2018).

    Article  ADS  Google Scholar 

  35. Y. G. Peng, Y. Li, Y. X. Shen, Z. G. Geng, J. Zhu, C. W. Qiu, and X. F. Zhu, Phys. Rev. Res. 1, 033149 (2019).

    Article  Google Scholar 

  36. Z. G. Geng, Y. G. Peng, Y. X. Shen, Z. Ma, R. Yu, J. H. Gao, and X. F. Zhu, Phys. Rev. B 100, 224105 (2019).

    Article  ADS  Google Scholar 

  37. Y. Ding, Y. Peng, Y. Zhu, X. Fan, J. Yang, B. Liang, X. Zhu, X. Wan, and J. Cheng, Phys. Rev. Lett. 122, 014302 (2019).

    Article  ADS  Google Scholar 

  38. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962).

    MATH  Google Scholar 

  39. K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. X 6, 021007 (2016), arXiv: 1509.06886.

    Google Scholar 

  40. K. Ding, G. Ma, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 121, 085702 (2018), arXiv: 1804.09561.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhu or Xue-Feng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YX., Zeng, LS., Geng, ZG. et al. Acoustic topological adiabatic passage via a level crossing. Sci. China Phys. Mech. Astron. 64, 244302 (2021). https://doi.org/10.1007/s11433-020-1590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1590-1

Keywords

Navigation