Skip to main content
Log in

Tight-binding models for ultracold atoms in optical lattices: general formulation and applications

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Tight-binding models for ultracold atoms in optical lattices can be properly defined by using the concept of maximally localized Wannier functions for composite bands. The basic principles of this approach are reviewed here, along with different applications to lattice potentials with two minima per unit cell, in one and two spatial dimensions. Two independent methods for computing the tight-binding coefficients—one ab initio, based on the maximally localized Wannier functions, the other through analytic expressions in terms of the energy spectrum—are considered. In the one dimensional case, where the tight-binding coefficients can be obtained by designing a specific gauge transformation, we consider both the case of quasi resonance between the two lowest bands, and that between s and p orbitals. In the latter case, the role of the Wannier functions in the derivation of an effective Dirac equation is also reviewed. Then, we consider the case of a two dimensional honeycomb potential, with particular emphasis on the Haldane model, its phase diagram, and the breakdown of the Peierls substitution. Tunable honeycomb lattices, characterized by movable Dirac points, are also considered. Finally, general considerations for dealing with the interaction terms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  2. M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices—Simulating Quantum Many-body Systems (Oxford University Press, Oxford, 2012).

    Book  MATH  Google Scholar 

  3. V. I. Yukalov, and E. P. Yukalova, Phys. Rev. A 78, 063610 (2008).

    Article  ADS  Google Scholar 

  4. V.I. Yukalov, Laser Phys. 19, 1 (2009).

    Article  ADS  Google Scholar 

  5. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, Adv. Phys. 56, 243 (2007).

    Article  ADS  Google Scholar 

  6. L. Sanchez-Palencia, and L. Santos, Phys. Rev. A 72, 053607 (2005).

    Article  ADS  Google Scholar 

  7. L. Fallani, C. Fort, and M. Inguscio, Adv. At. Mol. Opt. Phys. 56, 119 (2008).

    Article  ADS  Google Scholar 

  8. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature 453, 895 (2008).

    Article  ADS  Google Scholar 

  9. M. Modugno, New J. Phys. 11, 033023 (2009).

    Article  ADS  Google Scholar 

  10. S.-L. Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007).

    Article  ADS  Google Scholar 

  11. C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev. Lett. 99, 070401 (2007).

    Article  ADS  Google Scholar 

  12. C. Wu, and S. Das Sarma, Phys. Rev. B 77, 235107 (2008).

    Article  ADS  Google Scholar 

  13. B. Wunsch, F. Guinea, and F. Sols, New J. Phys. 10, 103027 (2008).

    Article  ADS  Google Scholar 

  14. K. L. Lee, B. Grémaud, R. Han, B.-G. Englert, and C. Miniatura, Phys. Rev. A 80, 043411 (2009).

    Article  ADS  Google Scholar 

  15. P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Nat. Phys. 7, 434 (2011).

    Article  Google Scholar 

  16. P. Soltan-Panahi, D. Luhmann, J. Struck, P. Windpassinger, and K. Sengstock, Nat. Phys. 8, 71 (2012).

    Article  Google Scholar 

  17. R. de Gail, J. N. Fuchs, M. O. Goerbig, F. Piéchon, and G. Montambaux, Phys. B-Phys. Condens. Matter 407, 1948 (2012).

    Article  ADS  Google Scholar 

  18. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 302 (2012).

    Article  ADS  Google Scholar 

  19. L.-K. Lim, J.-N. Fuchs, and G. Montambaux, Phys. Rev. Lett. 108, 175303 (2012).

    Article  ADS  Google Scholar 

  20. Y. Hasegawa, and K. Kishigi, Phys. Rev. B 86, 165430 (2012).

    Article  ADS  Google Scholar 

  21. K. Sun, W. V. Liu, A. Hemmerich, and S. Das Sarma, Nat. Phys. 8, 67 (2012).

    Article  Google Scholar 

  22. J.-N. Fuchs, L.-K. Lim, and G. Montambaux, Phys. Rev. A 86, 063613 (2012).

    Article  ADS  Google Scholar 

  23. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  24. J. Des Cloizeaux, Phys. Rev. 129, 554 (1963).

    Article  MathSciNet  Google Scholar 

  25. J. Des Cloizeaux, Phys. Rev. 135, A698 (1964).

    Article  MathSciNet  Google Scholar 

  26. S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev. B 66, 035412 (2002).

    Article  ADS  Google Scholar 

  27. J. Hubbard, Proc. R. Soc. London A-Math. Phys. Eng. Sci. 276, 238 (1963).

    Article  ADS  Google Scholar 

  28. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989).

    Article  ADS  Google Scholar 

  29. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  30. G. H. Wannier, Phys. Rev. 52, 191 (1937).

    Article  ADS  Google Scholar 

  31. W. Kohn, Phys. Rev. 115, 809 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  32. L. He, and D. Vanderbilt, Phys. Rev. Lett. 86, 5341 (2001).

    Article  ADS  Google Scholar 

  33. Z. Wilhelm, J. Opt. B-Quantum Semicl. Opt. 5, S9 (2003).

    Article  Google Scholar 

  34. F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch, Phys. Rev. A 72, 053606 (2005).

    Article  ADS  Google Scholar 

  35. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    MATH  Google Scholar 

  36. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

    Article  ADS  Google Scholar 

  37. N. Marzari, and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

    Article  ADS  Google Scholar 

  38. C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Phys. Rev. Lett. 98, 046402 (2007).

    Article  ADS  Google Scholar 

  39. G. Panati, and A. Pisante, Commun. Math. Phys. 322 835 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. A. Mostofi, J. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and I. Marzari, Comput. Phys. Commun. 178, 685 (2008).

    Article  ADS  Google Scholar 

  41. M. Modugno, and G. Pettini, New J. Phys. 14, 055004 (2012).

    Article  ADS  Google Scholar 

  42. J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, and M. Modugno, Phys. Rev. A 87, 011602 (2013).

    Article  ADS  Google Scholar 

  43. J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, and M. Modugno, Phys. Rev. A 88, 033631 (2013).

    Article  ADS  Google Scholar 

  44. X. Lopez-Gonzalez, J. Sisti, G. Pettini, and M. Modugno, Phys. Rev. A 89, 033608 (2014).

    Article  ADS  Google Scholar 

  45. W. Ganczarek, M. Modugno, G. Pettini, and J. Zakrzewski, Phys. Rev. A 90, 033621 (2014).

    Article  ADS  Google Scholar 

  46. J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, and M. Modugno, Phys. Rev. A 90, 033609 (2014).

    Article  ADS  Google Scholar 

  47. J. Ibañez-Azpiroz, A. Eiguren, A. Bergara, G. Pettini, and M. Modugno, Phys. Rev. B 92, 195132 (2015).

    Article  ADS  Google Scholar 

  48. L. B. Shao, S.-L. Zhu, L. Sheng, D. Y. Xing, and Z. D. Wang, Phys. Rev. Lett. 101, 246810 (2008).

    Article  ADS  Google Scholar 

  49. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  50. R. Walters, G. Cotugno, T. H. Johnson, S. R. Clark, and D. Jaksch, Phys. Rev. A 87, 043613 (2013).

    Article  ADS  Google Scholar 

  51. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).

    Article  ADS  Google Scholar 

  52. S. Trebst, U. Schollwöck, M. Troyer, and P. Zoller, Phys. Rev. Lett. 96, 250402 (2006).

    Article  ADS  Google Scholar 

  53. Y. Qian, M. Gong, and C. Zhang, Phys. Rev. A 84, 013608 (2011).

    Article  ADS  Google Scholar 

  54. Y. Qian, M. Gong, and C. Zhang, Phys. Rev. A 87, 013636 (2013).

    Article  ADS  Google Scholar 

  55. D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Phys. Rev. A 75, 063404 (2007).

    Article  ADS  Google Scholar 

  56. J. Des Cloizeaux, Phys. Rev. 135, A685 (1964).

    Article  MathSciNet  Google Scholar 

  57. E. I. Blount, in Formalisms of Band Theory, edited by F. Seitz, and D. Turnbull (Academic Press, New York, 1962), pp. 305–373.

  58. P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968).

    Article  ADS  Google Scholar 

  59. S. Kivelson, Phys. Rev. B 26, 4269 (1982).

    Article  ADS  Google Scholar 

  60. G. Wirth, M. Olschlager, and A. Hemmerich, Nat. Phys. 7, 147 (2011).

    Article  Google Scholar 

  61. D. Witthaut, T. Salger, S. Kling, C. Grossert, and M. Weitz, Phys. Rev. A 84, 033601 (2011).

    Article  ADS  Google Scholar 

  62. T. Salger, C. Grossert, S. Kling, and M. Weitz, Phys. Rev. Lett. 107, 240401 (2011).

    Article  ADS  Google Scholar 

  63. O. Morandi, and M. Modugno, Phys. Rev. B 71, 235331 (2005).

    Article  ADS  Google Scholar 

  64. J. Callaway, Energy Band Theory (Academic, New York, 1964).

    MATH  Google Scholar 

  65. E. N. Adams, Phys. Rev. 85, 41 (1952).

    Article  ADS  Google Scholar 

  66. J. Bjorken, and S. Drell, Relativistic Quantum Mechanics (McGraw- Hill, New York, 1964).

    MATH  Google Scholar 

  67. W. Greiner, Relativistic Quantum Mechanics—Wave Equations (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  68. G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, Eur. Phys. J. B-Condens. Matter Complex Sys. 72, 509 (2009).

    Article  Google Scholar 

  69. G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 153412 (2009).

    Article  ADS  Google Scholar 

  70. T. D Stanescu, V. Galitski, J. Y. Vaishnav, C. W. Clark, and S. Das Sarma, Phys. Rev. A 79, 053639 (2009).

    Article  ADS  Google Scholar 

  71. T. Uehlinger, D. Greif, G. Jotzu, and L. Tarruell, Eur. Phys. J. 217, 121 (2013).

    Google Scholar 

  72. X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308 (2006).

    Article  ADS  Google Scholar 

  73. K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  74. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).

    Article  ADS  Google Scholar 

  75. R. Peierls, Z. Phys. 80, 763 (1933).

  76. J. Luttinger, Phys. Rev. 84, 814 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  77. D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

    Article  ADS  Google Scholar 

  78. A. S. Alexandrov, and H. Z. Capellmann, Phys. B 83, 237 (1991).

    Google Scholar 

  79. B. A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013).

    MATH  Google Scholar 

  80. T. B. Boykin, R. C. Bowen, and G. Klimeck, Phys. Rev. B 63, 245314 (2001).

    Article  ADS  Google Scholar 

  81. A. S. Alexandrov, and H. Capellmann, Phys. Rev. Lett. 66, 365 (1991).

    Article  ADS  Google Scholar 

  82. T. Thonhauser, and D. Vanderbilt, Phys. Rev. B 74, 235111 (2006).

    Article  ADS  Google Scholar 

  83. D.-S. Lühmann, O. Jürgensen, M. Weinberg, J. Simonet, P. Soltan-Panahi, and K. Sengstock, Phys. Rev. A 90, 013614 (2014).

    Article  ADS  Google Scholar 

  84. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. A. Malomed, T. Sowinski, and J. Zakrzewski, Rep. Prog. Phys. 78, 066001 (2015).

    Article  ADS  Google Scholar 

  85. P. R. Johnson, E. Tiesinga, J. V. Porto, and C. J. Williams, New J. Phys. 11, 093022 (2009).

    Article  ADS  Google Scholar 

  86. A. Mering, and M. Fleischhauer, Phys. Rev. A 83, 063630 (2011).

    Article  ADS  Google Scholar 

  87. U. Bissbort, F. Deuretzbacher, and W. Hofstetter, Phys. Rev. A 86, 023617 (2012).

    Article  ADS  Google Scholar 

  88. D.-S. Lühmann, O. Jürgensen, and K. Sengstock, New J. Phys. 14, 033021 (2012).

    Article  Google Scholar 

  89. M. Lcacki, D. Delande, and J. Zakrzewski, New J. Phys. 15, 013062 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Modugno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modugno, M., Ibañez-Azpiroz, J. & Pettini, G. Tight-binding models for ultracold atoms in optical lattices: general formulation and applications. Sci. China Phys. Mech. Astron. 59, 660001 (2016). https://doi.org/10.1007/s11433-015-0514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-0514-5

Keywords

Navigation