Skip to main content
Log in

Mining KPI correlations for non-parametric anomaly diagnosis in wireless networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The increase in mobile data traffic has imposed unprecedented pressure on wireless network management. KPI-based anomaly diagnosis can alleviate such pressure by automatically identifying the cause of abnormalities in the traffic and providing end-to-end monitoring and optimization. Previous approaches mainly focus on finding a subset of anomaly-inducing KPIs on the basis of supervised learning procedures. These studies have two possible limitations: (1) the inherent correlations between KPIs that are proven to be effective for the anomaly diagnosis, are still largely underexplored; (2) machine learning models heavily rely on human annotations, which are expensive and labor-intensive. Therefore, we propose random matrix theory-based KPI identification (RKI), a novel method that automatically mines rich interactions between KPIs for anomaly diagnosis without using any learnable parameters or human annotations. Specifically, RKI diagnoses the abnormal KPIs in two steps. First, we build a matrix for anomaly KPI detection to mine the spectrum of its covariances. Second, another new matrix is reconstructed to calculate the correlation difference. By doing so, the anomaly KPIs that have larger correlation difference scores can be efficiently identified in the wireless traffic without any trainable parameters. In extensive experiments on a public dataset, RKI yields a 6.5% higher true diagnostic rate and 11.36% lower false alarming rate than the statistical model, demonstrating its effectiveness. A 100 × larger scale synthetic dataset also demonstrates the capabilities of RKI to explore massive data traffic under real-word scenarios. Finally, we discuss RKI’s potential applications of our method in future 6G wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Index C V N. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper. Cisco: San Jose, 2019

    Google Scholar 

  2. Aliu O G, Imran A, Imran M A, et al. A survey of self organisation in future cellular networks. IEEE Commun Surv Tutorials, 2013, 15: 336–361

    Article  Google Scholar 

  3. Strinati E C, Barbarossa S, Gonzalez-Jimenez J L, et al. 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh Technol Mag, 2019, 14: 42–50

    Article  Google Scholar 

  4. You X H, Wang C-X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  5. Fernandes J G, Rodrigues J J P C, Carvalho L F, et al. A comprehensive survey on network anomaly detection. Telecommun Syst, 2019, 70: 447–489

    Article  Google Scholar 

  6. Callado A, Kamienski C, Szabo G, et al. A survey on Internet traffic identification. IEEE Commun Surv Tut, 2009, 11: 37–52

    Article  Google Scholar 

  7. Sui T, Tao X, Xia S, et al. A real-time hidden anomaly detection of correlated data in wireless networks. IEEE Access, 2020, 8: 60990–60999

    Article  Google Scholar 

  8. Munoz P, Barco R, Serrano I, et al. Correlation-based time-series analysis for cell degradation detection in SON. IEEE Commun Lett, 2016, 20: 396–399

    Article  Google Scholar 

  9. Palacios D, de-la-Bandera I, Gomez-Andrades A, et al. Automatic feature selection technique for next generation self-organizing networks. IEEE Commun Lett, 2018, 22: 1272–1275

    Article  Google Scholar 

  10. Marnerides A K, Schaeffer-Filho A, Mauthe A. Traffic anomaly diagnosis in Internet backbone networks: a survey. Comput Networks, 2014, 73: 224–243

    Article  Google Scholar 

  11. Jiang D, Yuan Z, Zhang P, et al. A traffic anomaly detection approach in communication networks for applications of multimedia medical devices. Multimed Tools Appl, 2016, 75: 14281–14305

    Article  Google Scholar 

  12. Ahmed M, Mahmood A N, Hu J. A survey of network anomaly detection techniques. J Network Comput Appl, 2016, 60: 19–31

    Article  Google Scholar 

  13. Jurdak R, Wang X R, Obst O, et al. Wireless sensor network anomalies: diagnosis and detection strategies. In: Intelligence-Based Systems Engineering. Berlin: Springer, 2011. 309–325

    Google Scholar 

  14. He Z, Xu X, Deng S. Discovering cluster-based local outliers. Pattern Recogn Lett, 2003, 24: 1641–1650

    Article  MATH  Google Scholar 

  15. Brint A, Genovese A, Piccolo C, et al. Reducing data requirements when selecting key performance indicators for supply chain management: the case of a multinational automotive component manufacturer. Int J Production Economics, 2021, 233: 107967

    Article  Google Scholar 

  16. Münz G, Li S, Carle G. Traffic anomaly detection using k-means clustering. In: Proceedings of GI/ITG Workshop MMBnet, 2007. 13–14

  17. Khreich W, Khosravifar B, Hamou-Lhadj A, et al. An anomaly detection system based on variable N-gram features and one-class SVM. Inf Software Tech, 2017, 91: 186–197

    Article  Google Scholar 

  18. Zhang C, Song D, Chen Y, et al. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2019. 33: 1409–1416

    Google Scholar 

  19. Kwon D, Natarajan K, Suh S C, et al. An empirical study on network anomaly detection using convolutional neural networks. In: Proceedings of IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018. 1595–1598

  20. Kibria M G, Nguyen K, Villardi G P, et al. Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access, 2018, 6: 32328–32338

    Article  Google Scholar 

  21. He X, Ai Q, Qiu R C, et al. A big data architecture design for smart grids based on random matrix theory. IEEE Trans Smart Grid, 2015. doi: https://doi.org/10.1109/TSG.2015.2445828

  22. Qiu R C, Antonik P. Smart Grid Using Big Data Analytics: A Random Matrix Theory Approach. Hoboken: John Wiley & Sons, 2017

    Book  Google Scholar 

  23. Xu F, Li Y, Wang H, et al. Understanding mobile traffic patterns of large scale cellular towers in urban environment. IEEE ACM Trans Networking, 2016, 25: 1147–1161

    Article  Google Scholar 

  24. Yang J, Ma Z, Dong C, et al. An empirical investigation into CDMA network traffic classification based on feature selection. In: Proceedings of the 15th International Symposium on Wireless Personal Multimedia Communications, 2012. 448–452

  25. Chen Z, Chen D, Zhang X, et al. Learning graph structures with transformer for multivariate time-series anomaly detection in IoT. IEEE Internet Things J, 2022, 9: 9179–9189

    Article  Google Scholar 

  26. Tao T. Topics in Random Matrix Theory. Providence: American Mathematical Society, 2012

    Book  MATH  Google Scholar 

  27. Brody T A, Flores J, French J B, et al. Random-matrix physics: spectrum and strength fluctuations. Rev Mod Phys, 1981, 53: 385–479

    Article  MathSciNet  Google Scholar 

  28. Guhr T, Müller-Groeling A, Weidenmüller H A. Random-matrix theories in quantum physics: common concepts. Phys Rep, 1998, 299: 189–425

    Article  MathSciNet  Google Scholar 

  29. Laloux L, Cizeau P, Potters M, et al. Random matrix theory and financial correlations. Int J Theor Appl Finan, 2000, 03: 391–397

    Article  MATH  Google Scholar 

  30. Yeo J, Papanicolaou G. Random matrix approach to estimation of high-dimensional factor models. 2016. ArXiv:1611.05571

  31. Chen H, Tao X F, Li N, et al. A data analysis of political polarization using random matrix theory. Sci China Inf Sci, 2020, 63: 129303

    Article  Google Scholar 

  32. Luo F, Zhong J, Yang Y, et al. Application of random matrix theory to biological networks. Phys Lett A, 2006, 357: 420–423

    Article  Google Scholar 

  33. Chen H, Tao X, Li N, et al. Physical layer data analysis for abnormal user detecting: a random matrix theory perspective. IEEE Access, 2019, 7: 169508

    Article  Google Scholar 

  34. Couillet R, Debbah M. Random Matrix Methods for Wireless Communications. Cambridge: Cambridge University Press, 2011

    Book  MATH  Google Scholar 

  35. Qiu R C, Hu Z, Li H, et al. Cognitive Radio Communication and Networking: Principles and PRACTICE. Hoboken: John Wiley & Sons, 2012

    Book  Google Scholar 

  36. He Y, Yu F R, Zhao N, et al. Big data analytics in mobile cellular networks. IEEE Access, 2016, 4: 1985–1996

    Article  Google Scholar 

  37. Tulino A M, Verdú S. Random matrix theory and wireless communications. FNT Commun Inf Theor, 2004, 1: 1–182

    Article  MATH  Google Scholar 

  38. Han B, Luo L, Sheng G, et al. Framework of random matrix theory for power system data mining in a non-Gaussian environment. IEEE Access, 2016, 4: 9969–9977

    Article  Google Scholar 

  39. Shi X, Qiu R, He X, et al. Early anomaly detection and localisation in distribution network: a data-driven approach. IET Gener Transm Distrib, 2020, 14: 3814–3825

    Article  Google Scholar 

  40. Shi X, Qiu R, Ling Z, et al. Spatio-temporal correlation analysis of online monitoring data for anomaly detection and location in distribution networks. IEEE Trans Smart Grid, 2019, 11: 995–1006

    Article  Google Scholar 

  41. Bun J, Bouchaud J P, Potters M. Cleaning large correlation matrices: tools from random matrix theory. Phys Rep, 2017, 666: 1–109

    Article  MathSciNet  MATH  Google Scholar 

  42. Benesty J, Chen J, Huang Y. On the importance of the Pearson correlation coefficient in noise reduction. IEEE Trans Audio Speech Lang Process, 2008, 16: 757–765

    Article  Google Scholar 

  43. Bai Z, Silverstein J W. Spectral Analysis of Large Dimensional Random Matrices. 2nd ed. New York: Springer, 2010

    Book  MATH  Google Scholar 

  44. Edelman A, Rao N R. Random matrix theory. Acta Numerica, 2005, 14: 233–297

    Article  MathSciNet  MATH  Google Scholar 

  45. Parwez M S, Rawat D B, Garuba M. Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network. IEEE Trans Ind Inf, 2017, 13: 2058–2065

    Article  Google Scholar 

  46. Alwis C D, Kalla A, Pham Q V, et al. Survey on 6G frontiers: trends, applications, requirements, technologies and future research. IEEE Open J Commun Soc, 2021, 2: 836–886

    Article  Google Scholar 

  47. Letaief K B, Chen W, Shi Y, et al. The roadmap to 6G: AI empowered wireless networks. IEEE Commun Mag, 2019, 57: 84–90

    Article  Google Scholar 

  48. Yang H, Alphones A, Xiong Z, et al. Artificial-intelligence-enabled intelligent 6G networks. IEEE Network, 2020, 34: 272–280

    Article  Google Scholar 

  49. Xiao Y, Shi G, Li Y, et al. Toward self-learning edge intelligence in 6G. IEEE Commun Mag, 2020, 58: 34–40

    Article  Google Scholar 

  50. Han G, Tu J, Liu L, et al. Anomaly detection based on multidimensional data processing for protecting vital devices in 6G-enabled massive IIoT. IEEE Internet Things J, 2021, 8: 5219–5229

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61941105, U21A20449), Beijing Natural Science Foundation (Grant No. L212003), and the 111 Project of China (Grant No. B16006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, T., Tao, X., Wu, H. et al. Mining KPI correlations for non-parametric anomaly diagnosis in wireless networks. Sci. China Inf. Sci. 66, 162301 (2023). https://doi.org/10.1007/s11432-021-3522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3522-0

Keywords

Navigation