Skip to main content
Log in

The synthesis of micro-sized silicon carbide whiskers and the application for heat transfer enhancement

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker synthesis, the starting powder mixture is obtained by milling short carbon fibers with the white ashes of rice hulls. Calcination in argon, together with the subsequent purification process, results in a high yield of SiC whiskers, which possess a diameter of 200–400 nm and a length of several tens of microns. The formation of the whiskers is discussed according to VS growth mechanism. Convective heat transfer performance in small channel tubes is then studied for fluid systems mixed with those micro-sized SiC whiskers at different concentrations. The heat transfer coefficient of SiC containing fluid can be significantly improved in comparison to the base fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang P, Liang J, Wang K Y, et al. The formation of fibrous SiC in SiC/Al2O3 composites from the silica-carbon-aluminum system. Int J Refract Met Hard Mater, 2012, 35: 196–201

    Article  Google Scholar 

  2. Li J, Shirai T, Fuji M. Rapid carbothermal synthesis of nanostructured silicon carbide particles and whiskers from rice husk by microwave heating method. Adv Powder Technol, 2013, 24: 838–843

    Article  Google Scholar 

  3. Li Q, Wang C A, Tie S. Synthesis of bamboo-like SiC whiskers from waste silica fume. Cryst Res Technol, 2014, 49: 290–297

    Article  Google Scholar 

  4. Li S, Zhang Y, Han J, et al. Fabrication and characterization of SiC whisker reinforced reaction bonded SiC composite. Ceram Int, 2013, 39: 449–455

    Article  Google Scholar 

  5. Wang Z, Li S, Wang M, et al. Effect of SiC whiskers on microstructure and mechanical properties of the MoSi 2SiCw composites. Int J Refract Met Hard Mater, 2013, 41: 489–494

    Article  Google Scholar 

  6. Xu K, Chen G, Wu F, et al. Effect of SiC whiskers addition on microstructure, microhardness and wettablility of Sn-Ag-Cu solder. City: IEEE, Year. 310–312

  7. Mani M K, Viola G, Reece M J, et al. Mechanical and magnetic characterisation of SiC whisker reinforced Fe-Co alloy composites. Mater Sci Eng: A, 2014, 592: 19–27

    Article  Google Scholar 

  8. Deng D, Luo X, Chen S, et al. The active-to-passive oxidation transition mechanism and engineering prediction method of C/SiC composites. Sci China Tech Sci, 2013, 56: 1403–1408

    Article  Google Scholar 

  9. Yang X, Zhang M, Wang Y, et al. Analyzing trap generation in silicon-nanocrystal memory devices using capacitance and current measurement. Sci China Tech Sci, 2012, 55: 588–593

    Article  Google Scholar 

  10. Song Q, Zhang Y, Zhang Y, et al. Investigation of surface morphology and ion activation of aluminium implanted 4H-SiC. Sci China Tech Sci, 2012, 55: 3401–3404

    Article  Google Scholar 

  11. Maxwell J. A Treatise on Electricity and Magnetism., Vol. 1 Clarendon Press. 1873.

    Google Scholar 

  12. Zhu H, Li C, Wu D, et al. Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci China Tech Sci, 2010, 53: 360–368

    Article  Google Scholar 

  13. Zhou M, Xia G, Chai L, et al. Analysis of flow and heat transfer characteristics of micro-pin fin heat sink using silver nanofluids. Sci China Tech Sci, 2012, 55: 155–162

    Article  Google Scholar 

  14. Lu H, Wang B, Zhang H, et al. Analysis of solid particle clusters in coherent structures of turbulent channel flow. Sci China Tech Sci, 2013, 56: 2525–2530

    Article  MathSciNet  Google Scholar 

  15. Wang L, Lin G, Chen H, et al. Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid. Sci China Ser E-Tech Sci, 2009, 52: 1744–1750

    Article  MathSciNet  Google Scholar 

  16. Lu Y, Li X, Li Q, et al. Numerical simulation and experimental investigation of natural convection heat transfer of molten salt around fine wire. Sci China Tech Sci, 2013, 56: 1651–1656

    Article  Google Scholar 

  17. Xu J, Yang M, Xu J, et al. Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer. Sci China Tech Sci, 2012, 55: 2184–2190

    Article  Google Scholar 

  18. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Tran, 2000, 43: 3701–3707

    Article  MATH  Google Scholar 

  19. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Fl, 2000, 21: 58–64

    Article  Google Scholar 

  20. Yi C, Liu Y, He Z, et al. Passive scalar characteristics along inertial particle trajectory in turbulent non-isothermal flows. Sci China Tech Sci, 2012, 55: 2593–2600

    Article  Google Scholar 

  21. Song J, Wang F, Cheng L. Experimental study and analysis of a novel multi-media plate heat exchanger. Sci China Tech Sci, 2012, 55: 2157–2162

    Article  Google Scholar 

  22. Masuda H, Ebata A, Teramae K, et al. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 1993, 7: 227–233

    Article  Google Scholar 

  23. Singh D, Timofeeva E, Yu W, et al. An investigation of silicon carbide-water nanofluid for heat transfer applications. J Appl Phys, 2009, 105: 064306

    Article  Google Scholar 

  24. Inaba H, Haruki N, Horibe A. Flow drag and heat transfer reduction of flowing water containing fibrous material in a straight pipe. Int J Therm Sci, 2000, 39: 18–29

    Article  Google Scholar 

  25. Ding Y, Alias H, Wen D, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Tran, 2006, 49: 240–250

    Article  Google Scholar 

  26. Yang Y, Zhang Z G, Grulke E A, et al. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Tran, 2005, 48: 1107–1116

    Article  Google Scholar 

  27. Gharagozloo P E, Kolade B, Eaton J K, et al. Nanofluid convection in microtubes. Journal of heat transfer, 2010, 132: 092401–092401

    Article  Google Scholar 

  28. Nakano H, Watari K, Kinemuchi Y, et al. Microstructural characterization of high-thermal-conductivity SiC ceramics. J Eur Ceram Soc, 2004, 24: 3685–3690

    Article  Google Scholar 

  29. Saito M, Nagashima S, Kato A. Crystal growth of SiC whisker from the SiO (g)-CO system. J Mater Sci Lett, 1992, 11: 373–376

    Article  Google Scholar 

  30. Gao Y, Bando Y, Kurashima K, et al. SiC nanorods prepared from SiO and activated carbon. J Mater Sci, 2002, 37: 2023–2029

    Article  Google Scholar 

  31. Li Z, Li H, Chen X, et al. Large-scale synthesis of crystalline β-SiC nanowires. Appl Phys A 2003, 76: 637–640

    Article  Google Scholar 

  32. Li Z, Shi T J, Tan D X. Long b-Silicon Carbide Necklace-Like Whiskers Prepared by Carbothermal Reduction of Wood Flour/Silica/Phenolic Composite. J Am Ceram Soc, 2010, 93: 3499–3503

    Article  Google Scholar 

  33. Yang Z X, Wu Y J, Zhu F, et al. Helical nanocables with SiC core and SiO2 shell. Physica E: Low-dimensional Systems and Nanostructures, 2005, 25: 395–398

    Article  Google Scholar 

  34. Hao Y-J, Wagner J B, Su D S, et al. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel. Nanotechnology, 2006, 17: 2870

    Article  Google Scholar 

  35. Yang W, Miao H, Xie Z, et al. Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor. Chem Phys Lett, 2004, 383: 441–444

    Article  Google Scholar 

  36. Mazdiyasni K, Zangvil A. Effect of impurities on SiC whisker morphology. J Am Ceram Soc, 1985, 68: C-142–C-144

    Article  Google Scholar 

  37. Tang C, Fan S, Dang H, et al. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction. J Cryst Growth, 2000, 210: 595–599

    Article  Google Scholar 

  38. Lee J-G, Cutler I B. Formation of SiC from rice hulls. Am Ceram Soc, Bull, 1975, 54: 195–198

    Google Scholar 

  39. Markovska I, Lyubchev L. A study on the thermal destruction of rice husk in air and nitrogen atmosphere. J Therm Anal Calorim, 2007, 89: 809–814

    Article  Google Scholar 

  40. Huang S, Jing S, Wang J, et al. Silica white obtained from rice husk in a fluidized bed. Powder Technol, 2001, 117: 232–238

    Article  Google Scholar 

  41. Souza M d, Magalhães W, Persegil M. Silica derived from burned rice hulls. Materials research, 2002, 5: 467–474

    Article  Google Scholar 

  42. Chaudhary D, Jollands M. Characterization of rice hull ash. J Appl Polym Sci, 2004, 93: 1–8

    Article  Google Scholar 

  43. Wei J, Li K-Z, Li H-J, et al. Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Mater Chem Phys, 2006, 95: 140–144

    Article  Google Scholar 

  44. Yang G, Cui H, Sun Y, et al. Simple catalyst-free method to the synthesis of β-SiC nanowires and their field emission properties. J Phys Chem C, 2009, 113: 15969–15973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PeiGen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Liang, J., Yin, L. et al. The synthesis of micro-sized silicon carbide whiskers and the application for heat transfer enhancement. Sci. China Technol. Sci. 57, 2371–2378 (2014). https://doi.org/10.1007/s11431-014-5704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5704-0

Keywords

Navigation