Skip to main content
Log in

The impacts of climate extremes on the terrestrial carbon cycle: A review

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The increased frequency of climate extremes in recent years has profoundly affected terrestrial ecosystem functions and the welfare of human society. The carbon cycle is a key process of terrestrial ecosystem changes. Therefore, a better understanding and assessment of the impacts of climate extremes on the terrestrial carbon cycle could provide an important scientific basis to facilitate the mitigation and adaption of our society to climate change. In this paper, we systematically review the impacts of climate extremes (e.g. drought, extreme precipitation, extreme hot and extreme cold) on terrestrial ecosystems and their mechanisms. Existing studies have suggested that drought is one of the most important stressors on the terrestrial carbon sink, and that it can inhibit both ecosystem productivity and respiration. Because ecosystem productivity is usually more sensitive to drought than respiration, drought can significantly reduce the strength of terrestrial ecosystem carbon sinks and even turn them into carbon sources. Large inter-model variations have been found in the simulations of drought-induced changes in the carbon cycle, suggesting the existence of a large gap in current understanding of the mechanisms behind the responses of ecosystem carbon balance to drought, especially for tropical vegetation. The effects of extreme precipitation on the carbon cycle vary across different regions. In general, extreme precipitation enhances carbon accumulation in arid ecosystems, but restrains carbon sequestration in moist ecosystems. However, current knowledge on the indirect effects of extreme precipitation on the carbon cycle through regulating processes such as soil carbon lateral transportation and nutrient loss is still limited. This knowledge gap has caused large uncertainties in assessing the total carbon cycle impact of extreme precipitation. Extreme hot and extreme cold can affect the terrestrial carbon cycle through various ecosystem processes. Note that the severity of such climate extremes depends greatly on their timing, which needs to be investigated thoroughly in future studies. In light of current knowledge and gaps in the understanding of how extreme climates affect the terrestrial carbon cycle, we strongly recommend that future studies should place more attention on the long-term impacts and on the driving mechanisms at different time scales. Studies based on multi-source data, methods and across multiple spatial-temporal scales, are also necessary to better characterize the response of terrestrial ecosystems to climate extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams H D, Zeppel M J B, Anderegg W R L, Hartmann H, Landhäusser S M, Tissue D T, Huxman T E, Hudson P J, Franz T E, Allen C D, Anderegg LDL, Barron-Gafford G A, Beerling D J, Breshears D D, Brodribb T J, Bugmann H, Cobb R C, Collins A D, Dickman LT, Duan H, Ewers B E, Galiano L, Galvez D A, Garcia-Forner N, Gaylord M L, Germino M J, Gessler A, Hacke U G, Hakamada R, Hector A, Jenkins M W, Kane J M, Kolb T E, Law D J, Lewis J D, Limousin J M, Love D M, Macalady A K, Martinez-Vilalta J, Mencuccini M, Mitchell P J, Muss J D, O’Brien M J, O’Grady A P, Pangle R E, Pinkard E A, Piper F I, Plaut J A, Pockman W T, Quirk J, Reinhardt K, Ripullone F, Ryan M G, Sala A, Sevanto S, Sperry J S, Vargas R, Vennetier M, Way D A, Xu C, Yepez E A, McDowell N G. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol, 1: 1285–1291

    Google Scholar 

  • Allen C D, Breshears D D, McDowell N G. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6: 1–55

    Google Scholar 

  • Amiro B D, Barr A G, Barr J G, Black T A, Bracho R, Brown M, Chen J, Clark K L, Davis K J, Desai A R, Dore S, Engel V, Fuentes J D, Goldstein A H, Goulden M L, Kolb T E, Lavigne M B, Law B E, Margolis H A, Martin T, McCaughey J H, Misson L, Montes-Helu M, Noormets A, Randerson J T, Starr G, Xiao J. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res, 115: G00k02

    Google Scholar 

  • Anderegg W R L, Klein T, Bartlett M, Sack L, Pellegrini A F A, Choat B, Jansen S. 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci USA, 113: 5024–5029

    Google Scholar 

  • Anderegg W R L, Plavcová L, Anderegg LDL, Hacke U G, Berry J A, Field C B. 2013. Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Change Biol, 19: 1188–1196

    Google Scholar 

  • Anderegg W R L, Schwalm C, Biondi F, Camarero J J, Koch G, Litvak M, Ogle K, Shaw J D, Shevliakova E, Williams A P, Wolf A, Ziaco E, Pacala S. 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349: 528–532

    Google Scholar 

  • Aragão L E O C, Malhi Y, Barbier N, Lima A, Shimabukuro Y, Anderson L, Saatchi S. 2008. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos Trans R Soc B-Biol Sci, 363: 1779–1785

    Google Scholar 

  • Aragão L E O C, Malhi Y, Roman-Cuesta R M, Saatchi S, Anderson L O, Shimabukuro Y E. 2007. Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett, 34: L07701

    Google Scholar 

  • Asner G P, Alencar A. 2010. Drought impacts on the Amazon forest: The remote sensing perspective. New Phytol, 187: 569–578

    Google Scholar 

  • Barriopedro D, Fischer E M, Luterbacher J, Trigo R M, Garcia-Herrera R. 2011. The hot summer of 2010: Redrawing the temperature record map of europe. Science, 332: 220–224

    Google Scholar 

  • Bastos A, Gouveia C M, Trigo R M, Running S W. 2014. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences, 11: 3421–3435

    Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret J Y, Burban B, Gross P, Bonnefond J M, Elbers J, Longdoz B, Epron D, Guehl J M, Granier A. 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Change Biol, 14: 1917–1933

    Google Scholar 

  • Brando P M, Balch J K, Nepstad D C, Morton D C, Putz F E, Coe M T, Silvério D, Macedo M N, Davidson E A, Nóbrega C C, Alencar A, Soares-Filho B S. 2014. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci USA, 111: 6347–6352

    Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci, 63: 625–644

    Google Scholar 

  • Brodribb T J, Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol, 149: 575–584

    Google Scholar 

  • Brodribb T J, Skelton R P, McAdam S A M, Bienaimé D, Lucani C J, Marmottant P. 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol, 209: 1403–1409

    Google Scholar 

  • Buermann W, Bikash P R, Jung M, Burn D H, Reichstein M. 2013. Earlier springs decrease peak summer productivity in North American boreal forests. Environ Res Lett, 8: 024027

    Google Scholar 

  • Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S. 2016. Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiol, 170: 273–282

    Google Scholar 

  • Choat B, Brodribb T J, Brodersen C R, Duursma R A, López R, Medlyn B E. 2018. Triggers of tree mortality under drought. Nature, 558: 531–539

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529–533

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quere C, Myneni R B, Piao S, Thornton P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quere C, Myneni R B, Piao S, Thornton P. 2013. Carbon and other biogeochemical cycles. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 465–570

    Google Scholar 

  • Cox P M, Betts R A, Collins M, Harris P P, Huntingford C, Jones C D. 2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol, 78: 137–156

    Google Scholar 

  • Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184–187

    Google Scholar 

  • De Boeck H J, Dreesen F E, Janssens I A, Nijs I. 2010. Climatic characteristics of heat waves and their simulation in plant experiments. Glob Change Biol, 16: 1992–2000

    Google Scholar 

  • De Boeck H J, Dreesen F E, Janssens I A, Nijs I. 2011. Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol, 189: 806–817

    Google Scholar 

  • Della-Marta P M, Haylock M R, Luterbacher J, Wanner H. 2007. Doubled length of western European summer heat waves since 1880. J Geophys Res, 112: D15103

    Google Scholar 

  • Delpierre N, Soudani K, François C, Köstner B, Pontailler J Y, Nikinmaa E, Misson L, Aubinet M, Bernhofer C, Granier A, Grünwald T, Heinesch B, Longdoz B, Ourcival J M, Rambal S, Vesala T, Dufrêne E. 2009. Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis. Glob Change Biol, 15: 1455–1474

    Google Scholar 

  • Dittmar C, Fricke W, Elling W. 2006. Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J For Res, 125: 249–259

    Google Scholar 

  • Doughty C E, Metcalfe D B, Girardin C A J, Amézquita F F, Cabrera D G, Huasco W H, Silva-Espejo J E, Araujo-Murakami A, da Costa M C, Rocha W, Feldpausch T R, Mendoza A L M, da Costa A C L, Meir P, Phillips O L, Malhi Y. 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 519: 78–82

    Google Scholar 

  • Esquivel-Muelbert A, Baker T R, Dexter K G, Lewis S L, Brienen R J W, Feldpausch T R, Lloyd J, Monteagudo-Mendoza A, Arroyo L, Álvarez-Dávila E, Higuchi N, Marimon B S, Marimon-Junior B H, Silveira M, Vilanova E, Gloor E, Malhi Y, Chave J, Barlow J, Bonal D, Davila Cardozo N, Erwin T, Fauset S, Hérault B, Laurance S, Poorter L, Qie L, Stahl C, Sullivan M J P, Ter Steege H, Vos VA, Zuidema P A, Almeida E, Almeida de Oliveira E, Andrade A, Vieira S A, Aragão L, Araujo-Murakami A, Arets E, Aymard C G A, Baraloto C, Camargo P B, Barroso J G, Bongers F, Boot R, Camargo J L, Castro W, Chama Moscoso V, Comiskey J, Cornejo Valverde F, Lola da Costa A C, Del Aguila Pasquel J, Di Fiore A, Fernanda Duque L, Elias F, Engel J, Flores Llampazo G, Galbraith D, Herrera Fernández R, Honorio Coronado E, Hubau W, Jimenez-Rojas E, Lima A J N, Umetsu R K, Laurance W, Lopez-Gonzalez G, Lovejoy T, Aurelio Melo Cruz O, Morandi P S, Neill D, Núñez Vargas P, Pallqui Camacho N C, Parada Gutierrez A, Pardo G, Peacock J, Peña-Claros M, Peñuela-Mora M C, Petronelli P, Pickavance G C, Pitman N, Prieto A, Quesada C, Ramírez-Angulo H, Réjou-Méchain M, Restrepo Correa Z, Roopsind A, Rudas A, Salomão R, Silva N, Silva Espejo J, Singh J, Stropp J, Terborgh J, Thomas R, Toledo M, Torres-Lezama A, Valenzuela Gamarra L, van de Meer P J, van der Heijden G, van der Hout P, Vasquez Martinez R, Vela C, Vieira I C G, Phillips O L. 2019. Compositional response of Amazon forests to climate change. Glob Change Biol, 25: 39–56

    Google Scholar 

  • Fay P A, Blair J M, Smith M D, Nippert J B, Carlisle J D, Knapp A K. 2011. Relative effects of precipitation variability and warming on tall-grass prairie ecosystem function. Biogeosciences, 8: 3053–3068

    Google Scholar 

  • Field C, Barros V, Stocker T, Dahe Q. 2012. Managing the Risks of Extreme Events and disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha M D, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell J G, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne S I, Walz A, Wattenbach M, Zavala M A, Zscheischler J. 2015. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob Change Biol, 21: 2861–2880

    Google Scholar 

  • Fu Y S H, Zhao H F, Piao S L, Peaucelle M, Peng S S, Zhou G Y, Ciais P, Huang M T, Menzel A, Uelas J P, Song Y, Vitasse Y, Zeng Z Z, Janssens I A. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526: 104–107

    Google Scholar 

  • Gatti L V, Gloor M, Miller J B, Doughty C E, Malhi Y, Domingues L G, Basso L S, Martinewski A, Correia C S C, Borges V F, Freitas S, Braz R, Anderson L O, Rocha H, Grace J, Phillips O L, Lloyd J. 2014. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 506: 76–80

    Google Scholar 

  • Haddad N M, Tilman D, Knops J M H. 2002. Long-term oscillations in grassland productivity induced by drought. Ecol Lett, 5: 110–120

    Google Scholar 

  • Hartmann H, Moura C F, Anderegg W R L, Ruehr N K, Salmon Y, Allen C D, Arndt S K, Breshears D D, Davi H, Galbraith D, Ruthrof K X, Wunder J, Adams H D, Bloemen J, Cailleret M, Cobb R, Gessler A, Grams TEE, Jansen S, Kautz M, Lloret F, O’Brien M. 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol, 218: 15–28

    Google Scholar 

  • He Q, Silliman B R, Liu Z Z, Cui B S. 2017. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecol Lett, 20: 194–201

    Google Scholar 

  • Heisler-White J L, Blair J M, Kelly E F, Harmoney K, Knapp A K. 2009. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Change Biol, 15: 2894–2904

    Google Scholar 

  • Hoffmann T, Schlummer M, Notebaert B, Verstraeten G, Korup O. 2013. Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe. Glob Biogeochem Cycle, 27: 828–835

    Google Scholar 

  • Hoffmann W A, Marchin R M, Abit P, Lau O L. 2011. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol, 17: 2731–2742

    Google Scholar 

  • Hoover D L, Knapp A K, Smith M D. 2014. Resistance and resilience ofa grassland ecosystem to climate extremes. Ecology, 95: 2646–2656

    Google Scholar 

  • Huang K, Wang S Q, Zhou L, Wang H M, Liu Y F, Yang F T. 2013. Effects of drought and ice rain on potential productivity of a subtropical coniferous plantation from 2003 to 2010 based on eddy covariance flux observation. Environ Res Lett, 8: 035021

    Google Scholar 

  • Huang M T, Wang X H, Keenan T F, Piao S L. 2018. Drought timing influences the legacy of tree growth recovery. Glob Change Biol, 24: 3546–3559

    Google Scholar 

  • Hufkens K, Friedl M A, Keenan T F, Sonnentag O, Bailey A, O’Keefe J, Richardson A D. 2012. Ecological impacts of a widespread frost event following early spring leaf-out. Glob Change Biol, 18: 2365–2377

    Google Scholar 

  • Inouye D W. 2000. The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett, 3: 457–463

    Google Scholar 

  • Inouye D W. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89: 353–362

    Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer T M, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin J N, Guo Q, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer S T, Mori A S, Naeem S, Niklaus P A, Polley H W, Reich P B, Roscher C, Seabloom E W, Smith M D, Thakur M P, Tilman D, Tracy B F, van der Putten W H, van Ruijven J, Weigelt A, Weisser W W, Wilsey B, Eisenhauer N. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526: 574–577

    Google Scholar 

  • Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler S E, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh B K, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C. 2011. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol, 99: 689–702

    Google Scholar 

  • Knapp A K, Beier C, Briske D D, Classen AT, Luo Y, Reichstein M, Smith M D, Smith S D, Bell J E, Fay P A, Heisler J L, Leavitt S W, Sherry R, Smith B, Weng E. 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58: 811–821

    Google Scholar 

  • Knapp A K, Fay P A, Blair J M, Collins S L, Smith M D, Carlisle J D, Harper C W, Danner B T, Lett M S, McCarron J K. 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298: 2202–2205

    Google Scholar 

  • Knapp A K, Smith M D. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science, 291: 481–484

    Google Scholar 

  • Kramer K, Vreugdenhil S J, van der Werf D C. 2008. Effects of flooding on the recruitment, damage and mortality of riparian tree species: A field and simulation study on the Rhine floodplain. For Ecol Manage, 255: 3893–3903

    Google Scholar 

  • Kreyling J, Wenigmann M, Beierkuhnlein C, Jentsch A. 2008. Effects of extreme weather events on plant productivity and tissue die-back are modified by community composition. Ecosystems, 11: 752–763

    Google Scholar 

  • Kurz WA, Stinson G, Rampley G J, Dymond C C, Neilson E T. 2008. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA, 105: 1551–1555

    Google Scholar 

  • Lal R. 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Rev Plant Sci, 22: 151–184

    Google Scholar 

  • Le Quéré C, Andrew R M, Friedlingstein P, Sitch S, Pongratz J, Manning A C, Korsbakken J I, Peters G P, Canadell J G, Jackson R B, Boden T A, Tans P P, Andrews O D, Arora V K, Bakker D C E, Barbero L, Becker M, Betts R A, Bopp L, Chevallier F, Chini L P, Ciais P, Cosca C E, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton R A, Hunt C W, Hurtt G, Ilyina T, Jain A K, Kato E, Kautz M, Keeling R F, Klein Goldewijk K, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro P M S, Munro D R, Nabel J E M S, Nakaoka S, Nojiri Y, Padín X A, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker B D, Tian H, Tilbrook B, van der Laan-Luijkx I T, van der Werf G R, van Heuven S, Viovy N, Vuichard N, Walker A P, Watson A J, Wiltshire A J, Zaehle S, Zhu D. 2018. Global carbon budget 2017. Earth Syst Sci Data Discuss, 10: 405–448

    Google Scholar 

  • Le Quéré C, Raupach M R, Canadell J G, Marland G, Le Quéré C, Raupach M R, Canadell J G, Marland G, Bopp L, Ciais P, Conway T J, Doney S C, Feely R A, Foster P, Friedlingstein P, Gurney K, Houghton R A, House J I, Huntingford C, Levy P E, Lomas M R, Majkut J, Metzl N, Ometto J P, Peters G P, Prentice I C, Randerson J T, Running S W, Sarmiento J L, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf G R, Woodward F I. 2009. Trends in the sources and sinks of carbon dioxide. Nat Geosci, 2: 831–836

    Google Scholar 

  • Lewis S L, Brando P M, Phillips O L, van der Heijden G M F, Nepstad D. 2011. The 2010 amazon drought. Science, 331: 554

    Google Scholar 

  • Li X, Li Y, Chen A, Gao M, Slette I J, Piao S. 2019. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric For Meteor, 269–270: 239–248

    Google Scholar 

  • Liu Q, Fu Y S H, Zhu Z C, Liu Y W, Liu Z, Huang M T, Janssens I A, Piao S L. 2016. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob Change Biol, 22: 3702–3711

    Google Scholar 

  • Liu Q, Piao S L, Janssens I A, Fu Y S, Peng S S, Lian X, Ciais P, Myneni R B, Penuelas J, Wang T. 2018. Extension of the growing season increases vegetation exposure to frost. Nat Commun, 9: 426

    Google Scholar 

  • Liu W X, Zhang Z, Wan S Q. 2009. Predominant role ofwater in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol, 15: 184–195

    Google Scholar 

  • Liu Y, Zhou Y, Ju W, Wang S, Wu X, He M, Zhu G. 2014. Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences, 11: 2583–2599

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H. 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303: 1499–1503

    Google Scholar 

  • McDowell N, Pockman W T, Allen C D, Breshears D D, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams D G, Yepez E A. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol, 178: 719–739

    Google Scholar 

  • Meir P, Metcalfe D B, Costa A C L, Fisher R A. 2008. The fate of assimilated carbon during drought: Impacts on respiration in Amazon rainforests. Philos Trans R Soc B-Biol Sci, 363: 1849–1855

    Google Scholar 

  • Mou C, Sun G, Luo P, Wang Z, Luo G. 2013. Flowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to extreme drought imposed in different periods. Chin J Appl Environ Biol, 19: 272–279

    Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B, Running S W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300: 1560–1563

    Google Scholar 

  • Perkins S E, Alexander L V, Nairn J R. 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett, 39: 2012GL053361

    Google Scholar 

  • Perkins-Kirkpatrick S E, Gibson P B. 2017. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci Rep, 7: 12256

    Google Scholar 

  • Phillips O L, Aragão L E O C, Lewis S L, Fisher J B, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada C A, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker T R, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira A C A, Cardozo N D, Czimczik C I, Feldpausch T R, Freitas M A, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill D A, Nepstad D, Patino S, Peñuela M C, Prieto A, Ramirez F, Schwarz M, Silva J, Silveira M, Thomas A S, Steege H T, Stropp J, Vásquez R, Zelazowski P, Alvarez Dávila E, Andelman S, Andrade A, Chao K J, Erwin T, Di Fiore A, Honorio C E, Keeling H, Killeen T J, Laurance W F, Peña Cruz A, Pitman N C A, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A. 2009. Drought sensitivity of the Amazon rainforest. Science, 323: 1344–1347

    Google Scholar 

  • Piao S L, Friedlingstein P, Ciais P, Viovy N, Demarty J. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycle, 21: GB3018

    Google Scholar 

  • Piao S L, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X H, Ahlstrom A, Anav A, Canadell J G, Cong N, Huntingford C, Jung M, Levis S, Levy P E, Li J S, Lin X, Lomas M R, Lu M, Luo Y Q, Ma Y C, Myneni R B, Poulter B, Sun Z Z, Wang T, Viovy N, Zaehle S, Zeng N. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol, 19: 2117–2132

    Google Scholar 

  • Polle A, Kroniger W, Rennenberg H. 1996. Seasonal fluctuations of ascorbate-related enzymes: Acute and delayed effects of late frost in spring on antioxidative systems in needles of Norway spruce (Picea abies L.). Plant Cell Physiol, 37: 717–725

    Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogée J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grünwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana J F, Sanz M J, Vesala T, Zhao M. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob Change Biol, 13: 634–651

    Google Scholar 

  • Rodriguez-Dominguez C M, Carins Murphy M R, Lucani C, Brodribb T J. 2018. Mapping xylem failure in disparate organs ofwhole plants reveals extreme resistance in olive roots. New Phytol, 218: 1025–1035

    Google Scholar 

  • Saleska S R, Didan K, Huete A R, da Rocha H R. 2007. Amazon forests green-up during 2005 drought. Science, 318: 612

    Google Scholar 

  • Salvucci M E, Crafts-Brandner S J. 2004. Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant, 120: 179–186

    Google Scholar 

  • Samanta A, Ganguly S, Hashimoto H, Devadiga S, Vermote E, Knyazikhin Y, Nemani R R, Myneni R B. 2010. Amazon forests did not green-up during the 2005 drought. Geophys Res Lett, 37: L05401

    Google Scholar 

  • Schwalm C R, Williams C A, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen J, Law B E, Lindroth A, Luyssaert S, Reichstein M, Richardson A D. 2010. Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Glob Change Biol, 16: 657–670

    Google Scholar 

  • Seidl R, Klonner G, Rammer W, Essl F, Moreno A, Neumann M, Dullinger S. 2018. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat Commun, 9: 1626

    Google Scholar 

  • Shi Z, Thomey M L, Mowll W, Litvak M, Brunsell N A, Collins S L, Pockman W T, Smith M D, Knapp A K, Luo Y. 2014. Differential effects of extreme drought on production and respiration: Synthesis and modeling analysis. Biogeosciences, 11: 621–633

    Google Scholar 

  • Sippel S, Reichstein M, Ma X, Mahecha M D, Lange H, Flach M, Frank D. 2018. Drought, heat, and the carbon cycle: A review. Curr Clim Change Rep, 4: 266–286

    Google Scholar 

  • Sippel S, Zscheischler J, Reichstein M. 2016. Ecosystem impacts ofclimate extremes crucially depend on the timing. Proc Natl Acad Sci USA, 113: 5768–5770

    Google Scholar 

  • Snyder R, Melo-Abreu J. 2005. Frost protection: Fundamentals, practice and economics. Frost Prot Fund Pract Econ. 1–240

  • Stallard R F. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob Biogeochem Cycle, 12: 231–257

    Google Scholar 

  • Suseela V, Conant RT, Wallenstein M D, Dukes J S. 2012. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol, 18: 336–348

    Google Scholar 

  • Thakur M P, Reich P B, Hobbie S E, Stefanski A, Rich R, Rice K E, Eddy W C, Eisenhauer N. 2018. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat Clim Change, 8: 75–78

    Google Scholar 

  • Urli M, Porté A J, Cochard H, Guengant Y, Burlett R, Delzon S. 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol, 33: 672–683

    Google Scholar 

  • Van Oost K, Quine T A, Govers G, De Gryze S, Six J, Harden J W, Ritchie J C, McCarty G W, Heckrath G, Kosmas C, Giraldez J V, Marques da Silva J R, Merckx R. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science, 318: 626–629

    Google Scholar 

  • Van Oost K, Verstraeten G, Doetterl S, Notebaert B, Wiaux F, Broothaerts N, Six J. 2012. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc Natl Acad Sci USA, 109: 19492–19497

    Google Scholar 

  • Van Ruijven J, Berendse F. 2010. Diversity enhances community recovery, but not resistance, after drought. J Ecol, 98: 81–86

    Google Scholar 

  • Vanoni M, Bugmann H, Nötzli M, Bigler C. 2016. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. For Ecol Manage, 382: 51–63

    Google Scholar 

  • Vicca S, Bahn M, Estiarte M, van Loon E E, Vargas R, Alberti G, Ambus P, Arain M A, Beier C, Bentley L P, Borken W, Buchmann N, Collins S L, de Dato G, Dukes J S, Escolar C, Fay P, Guidolotti G, Hanson P J, Kahmen A, Kröel-Dulay G, Ladreiter-Knauss T, Larsen K S, Lellei-Kovacs E, Lebrija-Trejos E, Maestre F T, Marhan S, Marshall M, Meir P, Miao Y, Muhr J, Niklaus P A, Ogaya R, Peñuelas J, Poll C, Rustad L E, Savage K, Schindlbacher A, Schmidt I K, Smith A R, Sotta E D, Suseela V, Tietema A, van Gestel N, van Straaten O, Wan S, Weber U, Janssens I A. 2014. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments. Biogeosciences, 11: 2991–3013

    Google Scholar 

  • von Buttlar J, Zscheischler J, Rammig A, Sippel S, Reichstein M, Knohl A, Jung M, Menzer O, Altaf Arain M, Buchmann N, Cescatti A, Gianelle D, Kiely G, Law B E, Magliulo V, Margolis H, McCaughey H, Merbold L, Migliavacca M, Montagnani L, Oechel W, Pavelka M, Peichl M, Rambal S, Raschi A, Scott R L, Vaccari F P, van Gorsel E, Varlagin A, Wohlfahrt G, Mahecha M D. 2018. Impacts of droughts and extremetemperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones. Biogeosciences, 15: 1293–1318

    Google Scholar 

  • Wang X H, Piao S L, Ciais P, Friedlingstein P, Myneni R B, Cox P, Heimann M, Miller J, Peng S S, Wang T, Yang H, Chen A P. 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 506: 212–215

    Google Scholar 

  • White M A, Running S W, Thornton P E. 1999. The impact of growingseason length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int J Biometeorol, 42: 139–145

    Google Scholar 

  • Wolf S, Keenan T F, Fisher J B, Baldocchi D D, Desai A R, Richardson A D, Scott R L, Law B E, Litvak M E, Brunsell N A, Peters W, van der Laan-Luijkx I T. 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc Natl Acad Sci USA, 113: 5880–5885

    Google Scholar 

  • Xiao J F, Zhuang Q L, Liang E Y, McGuire A D, Moody A, Kicklighter D W, Shao X M, Melillo J M. 2009. Twentieth-century droughts and their impacts on terrestrial carbon cycling in China. Earth Interact, 13: 1–31

    Google Scholar 

  • Xu L A, Samanta A, Costa M H, Ganguly S, Nemani R R, Myneni R B. 2011. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophys Res Lett, 38: L07402

    Google Scholar 

  • Xu X, Piao S, Wang X, Chen A, Ciais P, Myneni R B. 2012. Spatiotemporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environ Res Lett, 7: 035701

    Google Scholar 

  • Yi C X, Rustic G, Xu X Y, Wang J X, Dookie A, Wei S H, Hendrey G, Ricciuto D, Meyers T, Nagy Z, Pinter K. 2012. Climate extremes and grassland potential productivity. Environ Res Lett, 7: 035703

    Google Scholar 

  • Yue Y, Ni J R, Ciais P, Piao S L, Wang T, Huang M T, Borthwick A G L, Li T H, Wang Y C, Chappell A, Van O K. 2016. Lateral transport ofsoil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proc Natl Acad Sci USA, 113: 6617–6622

    Google Scholar 

  • Zeglin L H, Bottomley P J, Jumpponen A, Rice C W, Arango M, Lindsley A, McGowan A, Mfombep P, Myrold D D. 2013. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology, 94: 2334–2345

    Google Scholar 

  • Zeng N, Yoon J H, Marengo J A, Subramaniam A, Nobre C A, Mariotti A, Neelin J D. 2008. Causes and impacts of the 2005 Amazon drought. Environ Res Lett, 3: 014002

    Google Scholar 

  • Zeppel M J B, Wilks J V, Lewis J D. 2014. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences, 11: 3083–3093

    Google Scholar 

  • Zhang L, Xiao J F, Li J, Wang K, Lei L P, Guo H D. 2012. The 2010 spring drought reduced primary productivity in southwestern China. Environ Res Lett, 7: 045706

    Google Scholar 

  • Zhao M S, Running S W. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329: 940–943

    Google Scholar 

  • Zscheischler J, Mahecha M D, von Buttlar J, Harmeling S, Jung M, Rammig A, Randerson J T, Schölkopf B, Seneviratne S I, Tomelleri E, Zaehle S, Reichstein M. 2014a. A few extreme events dominate global interannual variability in gross primary production. Environ Res Lett, 9: 035001

    Google Scholar 

  • Zscheischler J, Michalak A M, Schwalm C, Mahecha M D, Huntzinger D N, Reichstein M, Berthier G, Ciais P, Cook R B, El-Masri B, Huang M, Ito A, Jain A, King A, Lei H, Lu C, Mao J, Peng S, Poulter B, Ricciuto D, Shi X, Tao B, Tian H, Viovy N, Wang W, Wei Y, Yang J, Zeng N. 2014b. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Glob Biogeochem Cycle, 28: 585–600

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Zehao Shen, Prof. Tao Wang, Dr. Yongwen Liu, Xiangyi Li and Kai Wang for their contribution to the text. This work was supported by the National Natural Science Foundation of China (Grant No. 41530528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Piao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piao, S., Zhang, X., Chen, A. et al. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci. China Earth Sci. 62, 1551–1563 (2019). https://doi.org/10.1007/s11430-018-9363-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9363-5

Keywords

Navigation