Skip to main content
Log in

Mo marine geochemistry and reconstruction of ancient ocean redox states

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Molybdenum (Mo) proxies, including bulk concentration and isotopic composition, have been increasingly used to reconstruct ancient ocean redox states. This study systematically reviews Mo cycles and their accompanying isotopic fractionations in modern ocean as well as their application in paleo-ocean redox reconstruction. Our review indicates that Mo enrichment in sediments mainly records the adsorption of Fe-Mn oxides/hydroxides and chemical bonding of H2S. Thus, Mo enrichment in anoxic sediments generally reflects the presence of H2S in the water column or pore waters. In addition to the effect of euxinia, sedimentary Mo enrichment is related to the size of the oceanic Mo reservoir. Given these primary mechanisms for oceanic Mo cycling, Mo abundance data and Mo/TOC ratios acquired from euxinic sediments in geological times show that fluctuations of the oceanic Mo reservoir are well correlated with oxygenation of the atmosphere and oceans and suggest that oxygenation occurred in phases. Mo proxies suggest that Mo isotopes in strongly euxinic sediments reflect the contemporaneous Mo isotopic composition of seawater, but other processes such as iron-manganese (Fe-Mn) adsorption and weak euxinia can result in different fractionations. Diagenesis may complicate Mo enrichment and its isotopic fractionation in sediments. With appropriate constraints on the Mo isotopic composition of seawater and various outputs, a Mo isotope mass-balance model can quantitatively reconstruct global redox conditions over geological history. In summary, Mo proxies can be effectively used to reconstruct oceanic redox conditions on various timescales due to their sensitivity to both local and global marine redox conditions. However, given the complexity of geochemical processes, particularly the effects of diagenesis, further work is required to apply Mo proxies to ancient oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo T J. 2004. Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32: 1057

    Article  Google Scholar 

  • Algeo T J, Lyons T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, doi: 10.1029/2004pa001112

  • Algeo T J, Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206: 289–318

    Article  Google Scholar 

  • Anbar A D. 2004. Molybdenum stable isotopes: Observations, interpretations and directions. Rev Mineral Geochem, 55: 429–454

    Article  Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137–1142

    Article  Google Scholar 

  • Anbar A D, Rouxel O. 2007. Metal Stable Isotopes in Paleoceanography. Annu Rev Earth Planet Sci, 35: 717–746

    Article  Google Scholar 

  • Archer C, Vance D. 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat Geosci, 1: 597–600

    Article  Google Scholar 

  • Arnold G L, Anbar A D, Barling J, Lyons T W. 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304: 87–90

    Article  Google Scholar 

  • Arnold G L, Lyons T W, Gordon G W, Anbar A D. 2012. Extreme change in sulfide concentrations in the Black Sea during the Little Ice Age reconstructed using molybdenum isotopes. Geology, 40: 595–598

    Article  Google Scholar 

  • Baldwin G J, Nä gler T F, Greber N D, Turner E C, Kamber B S. 2013. Mo isotopic composition of the mid-Neoproterozoic ocean: An iron formation perspective. Precambrian Res, 230: 168–178

    Article  Google Scholar 

  • Barling J, Anbar A D. 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett, 217: 315–329

    Article  Google Scholar 

  • Barling J, Arnold G L, Anbar A D. 2001. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett, 193: 447–457

    Article  Google Scholar 

  • Bekker A, Holland H D, Wang P L, Rumble D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117–120

    Article  Google Scholar 

  • Brocks J J. 2005. Building the biomarker tree of life. Rev Mineral Geochem, 59: 233–258

    Article  Google Scholar 

  • Brumsack H J. 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Int J Earth Sci Geol Rundschau, 78: 851–882

    Article  Google Scholar 

  • Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450–453

    Article  Google Scholar 

  • Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33: 1–36

    Article  Google Scholar 

  • Canfield D E, Ngombi-Pemba L, Hammarlund E U, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A C, Albani A E. 2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proc Natl Acad Sci USA, 110: 16736–16741

    Article  Google Scholar 

  • Canfield D E, Thamdrup B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology, 7: 385–92

    Article  Google Scholar 

  • Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M, Poulton S W, Och L M, Jiang S Y, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 6, doi: 10.1038/ncomms8142

  • Collier R W. 1985. Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr, 30: 1351–1354

    Article  Google Scholar 

  • Czaja A D, Johnson C M, Roden E E, Beard B L, Voegelin A R, Nagler T F, Beukes N J, Wille M. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim Cosmochim Acta, 86: 118–137

    Article  Google Scholar 

  • Dahl T W, Anbar A D, Gordon G W, Rosing M T, Frei R, Canfield D E. 2010a. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta, 74: 144–163

    Article  Google Scholar 

  • Dahl T W, Canfield D E, Rosing M T, Frei R E, Gordon G W, Knoll A H, Anbar A D. 2011. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans. Earth Planet Sci Lett, 311: 264–274

    Article  Google Scholar 

  • Dahl T W, Hammarlund E U, Anbar A D, Bond D P G, Gill B C, Gordon G W, Knoll A H, Nielsen A T, Schovsbo N H, Canfield D E. 2010b. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA, 107: 17911–17915

    Article  Google Scholar 

  • Duan Y, Anbar A D, Arnold G L, Lyons T W, Gordon G W, Kendall B. 2010. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta, 74: 6655–6668

    Article  Google Scholar 

  • Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H. 2015. Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa. Precambrian Res, 266: 27–46

    Article  Google Scholar 

  • Farquhar J. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758

    Article  Google Scholar 

  • Feng L, Li C, Huang J, Chang H, Chu X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform, South China. Precambrian Res, 246: 123–133

    Article  Google Scholar 

  • Fike D A, Grotzinger J P, Pratt L M, Summons R E. 2006. Oxidation of the Ediacaran ocean. Nature, 444: 744–747

    Article  Google Scholar 

  • Gaucher E A, Govindarajan S, Ganesh O K. 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature, 451: 704–707

    Article  Google Scholar 

  • Gilleaudeau G J, Kah L C. 2013. Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chem Geol, 356: 21–37

    Article  Google Scholar 

  • Goldberg T, Archer C, Vance D, Poulton S W. 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr) oxides. Geochim Cosmochim Ac, 73: 6502–6516

    Article  Google Scholar 

  • Goldberg T, Archer C, Vance D, Thamdrup B, McAnena A, Poulton S W. 2012. Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chem Geol, 296-297: 73–82

    Article  Google Scholar 

  • Goldberg T, Gordon G, Izon G, Archer C, Pearce C R, McManus J, Anbar A D, Rehkämper M. 2013. Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J Ann Atom Spectrom, 28: 724–735

    Article  Google Scholar 

  • Goldberg T, Strauss H, Guo Q, Liu C. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Paleogeogr Paleoclimatol Paleoecol, 254: 175–193

    Article  Google Scholar 

  • Gordon G W, Lyons T W, Arnold G L, Roe J, Sageman B B, Anbar A D. 2009. When do black shales tell molybdenum isotope tales? Geology, 37: 535–538

    Article  Google Scholar 

  • Greber N D, Hofmann B A, Voegelin A R, Villa I M, Nä gler T F. 2011. Mo isotope composition in Mo-rich high- and low-T hydrothermal systems from the Swiss Alps. Geochim Cosmochim Acta, 75: 6600–6609

    Article  Google Scholar 

  • Hannah J L, Stein H J, Wieser M E, de Laeter J R, Varner M D. 2007. Molybdenum isotope variations in molybdenite: Vapor transport and Rayleigh fractionation of Mo. Geology, 35: 703–706

    Article  Google Scholar 

  • Hansel C M, Zeiner C A, Santelli C M, Webb S M. 2012. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci USA, 109: 12621–12625

    Article  Google Scholar 

  • Helz G R, Bura-Nakic E, Mikac N, Ciglenecki I. 2011. New model for molybdenum behavior in euxinic waters. Chem Geol, 284: 323–332

    Article  Google Scholar 

  • Helz G R, Miller C V, Charnock J M, Mosselmans J F W, Pattrick R A D, Garner C D, Vaughan D J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta, 60: 3631–3642

    Article  Google Scholar 

  • Herrmann A D, Kendall B, Algeo T J, Gordon G W, Wasylenki L E, Anbar A D. 2012. Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies: Significance for use of δ 98Mo as a global marine redox proxy. Chem Geol, 324-325: 87–98

    Article  Google Scholar 

  • Hoffman P F. 1998. A Neoproterozoic Snowball Earth. Science, 281: 1342–1346

    Article  Google Scholar 

  • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philos Trans R Soc B-Biol Sci, 361: 903–915

    Article  Google Scholar 

  • Kah L C, Lyons T W, Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431: 834–838

    Article  Google Scholar 

  • Kasting J F. 2001. Earth history. The rise of atmospheric oxygen. Science, 293: 819–820

    Google Scholar 

  • Kendall B, Creaser R A, Gordon G W, Anbar A D. 2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim Cosmochim Acta, 73: 2534–2558

    Article  Google Scholar 

  • Kendall B, Gordon G W, Poulton S W, Anbar A D. 2011. Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia. Earth Planet Sci Lett, 307: 450–460

    Article  Google Scholar 

  • Kendall B, Komiya T, Lyons T W, Bates S M, Gordon G W, Romaniello S J, Jiang G Q, Creaser R A, Xiao S H, McFadden K, Sawaki Y, Tahata M, Shu D G, Han J, Li Y, Chu X L, Anbar A D. 2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim Cosmochim Acta, 156: 173–193

    Article  Google Scholar 

  • Kowalski N, Dellwig O, Beck M, Grawe U, Neubert N, Nagler T F, Badewien T H, Brumsack H J, Van Beusekom J E E, Bottcher M E. 2013. Pelagic molybdenum concentration anomalies and the impact of sediment resuspension on the molybdenum budget in two tidal systems of the North Sea. Geochim Cosmochim Acta, 119: 198–211

    Article  Google Scholar 

  • Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451: 277–278

    Article  Google Scholar 

  • Kump L R, Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett, 235: 654–662

    Article  Google Scholar 

  • Kurzweil F, Wille M, Schoenberg R, Taubald H, Van Kranendonk M J. 2015. Continuously increasing δ 98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochim Cosmochim Acta, 164: 523–542

    Article  Google Scholar 

  • Lehmann B, Nä gler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35: 403–406

    Article  Google Scholar 

  • Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80–83

    Article  Google Scholar 

  • Li C, Love G D, Lyons T W, Scott C T, Feng L, Huang J, Chang H, Zhang Q, Chu X. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett, 331-332: 246–256

    Article  Google Scholar 

  • Li C, Planavsky N J, Love G D, Reinhard C T, Hardisty D, Feng L J, Bates S M, Huang J, Zhang Q R, Chu X L, Lyons T W. 2015. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochim Cosmochim Acta, 150: 90–105

    Article  Google Scholar 

  • Li Z X, Bogdanova S V, Collins A S, Davidson A, de Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res, 160: 179–210

    Article  Google Scholar 

  • Liermann L J, Guynn R L, Anbar A, Brantley S L. 2005. Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem Geol, 220: 285–302

    Article  Google Scholar 

  • Loyd S J, Marenco P J, Hagadorn J W, Lyons T W, Kaufman A J, Sour-Tovar F, Corsetti F A. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California. Earth Planet Sci Lett, 339-340: 79–94

    Article  Google Scholar 

  • Lyons T W, Anbar A D, Severmann S, Scott C, Gill B C. 2009. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study. Annu Rev Earth Planet Sci, 37: 507–534

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197–202

    Article  Google Scholar 

  • McManus J, Nägler T F, Siebert C, Wheat C G, Hammond D E. 2002. Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration. Geochem Geophys Geosyst, 3: 1–9

    Article  Google Scholar 

  • Metz S, Trefry J H. 2000. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta, 64: 2267–2279

    Article  Google Scholar 

  • Miller C A, Peucker-Ehrenbrink B, Walker B D, Marcantonio F. 2011. Re-assessing the surface cycling of molybdenum and rhenium. Geochim Cosmochim Acta, 75: 7146–7179

    Article  Google Scholar 

  • Morel F M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300: 944–947

    Article  Google Scholar 

  • Morford J L, Russell A D, Emerson S. 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar Geol, 174: 355–369

    Article  Google Scholar 

  • Nägler T F, Neubert N, Böttcher M E, Dellwig O, Schnetger B. 2011. Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chem Geol, 289: 1–11

    Article  Google Scholar 

  • Nameroff T J, Balistrieri L S, Murray J W. 2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim Cosmochim Ac, 66: 1139–1158

    Article  Google Scholar 

  • Neubert N, Heri A R, Voegelin A R, Nä gler T F, Schlunegger F, Villa I M. 2011. The molybdenum isotopic composition in river water: Constraints from small catchments. Earth Planet Sci Lett, 304: 180–190

    Article  Google Scholar 

  • Neubert N, Nä gler T F, Böttcher M E. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36: 775–778

    Article  Google Scholar 

  • Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26–57

    Article  Google Scholar 

  • Pearce C R, Cohen A S, Coe A L, Burton K W. 2008. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology, 36: 231–234

    Article  Google Scholar 

  • Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014a. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7: 283–286

    Article  Google Scholar 

  • Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014b. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346: 635–638

    Article  Google Scholar 

  • Poulson R L, McManus J, Severmann S, Berelson W M. 2009. Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochem Geophys Geosyst, 10, doi: 10.1029/2008GC002180

  • Poulson R L, Siebert C, McManus J, Berelson W M. 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34: 617–620

    Article  Google Scholar 

  • Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3: 486–490

    Article  Google Scholar 

  • Proemse B C, Grasby S E, Wieser M E, Mayer B, Beauchamp B. 2013. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology, 41: 967–970

    Article  Google Scholar 

  • Rahaman W, Singh S K, Raghav S. 2010. Dissolved Mo and U in rivers and estuaries of India: Implication to geochemistry of redox sensitive elements and their marine budgets. Chem Geol, 278: 160–172

    Article  Google Scholar 

  • Reinhard C T, Planavsky N J, Robbins L J, Partin C A, Gill B C, Lalonde S V, Bekker A, Konhauser K O, Lyons T W. 2013. Proterozoic ocean redox and biogeochemical stasis. Proc Natl Acad Sci USA, 110: 5357–5362

    Article  Google Scholar 

  • Reinhard C T, Raiswell R, Scott C, Anbar A D, Lyons T W. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326: 713–716.

    Article  Google Scholar 

  • Reitz A, Wille M, Nagler T, Delange G. 2007. Atypical Mo isotope signatures in eastern Mediterranean sediments. Chem Geol, 245: 1–8

    Article  Google Scholar 

  • Rouxel O J, Bekker A, Edwards K J. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307: 1088–1091

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546–549

    Article  Google Scholar 

  • Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem Geol, 324: 19–27

    Article  Google Scholar 

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459

    Article  Google Scholar 

  • Siebert C, Kramers J D, Meisel T, Morel P, Nä gler T F. 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim Cosmochim Acta, 69: 1787–1801

    Article  Google Scholar 

  • Siebert C, Nägler T F, von Blanckenburg F, Kramers J D. 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett, 211: 159–171

    Article  Google Scholar 

  • Siebert C, Nagler T F, Kramers J D. 2001. Determination of molybdenum isotope fractionation by double-spoke multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst, 2, doi: 10.1029/2000GC000124

  • Slack J F, Cannon W F. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology, 37: 1011–1014

    Article  Google Scholar 

  • Slack J F, Grenne T, Bekker A, Rouxel O J, Lindberg P A. 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett, 255: 243–256

    Article  Google Scholar 

  • Takahashi S, Yamasaki S-i, Ogawa Y, Kimura K, Kaiho K, Yoshida T, Tsuchiya N. 2014. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet Sci Lett, 393: 94–104

    Article  Google Scholar 

  • Tossell J A. 2005. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochim Cosmochim Acta, 69: 2981–2993

    Article  Google Scholar 

  • Turekian K K, Holland H D. 2013. Treatise on Geochemistry. 2nd ed. New York: Elsevier Science

    Google Scholar 

  • Voegelin A R, Nägler T F, Beukes N J, Lacassie J P. 2010. Molybdenum isotopes in late Archean carbonate rocks: Implications for early Earth oxygenation. Precambrian Res, 182: 70–82

    Article  Google Scholar 

  • Voegelin A R, Nägler T F, Samankassou E, Villa I M. 2009. Molybdenum isotopic composition of modern and Carboniferous carbonates. Chem Geol, 265: 488–498

    Article  Google Scholar 

  • Voegelin A R, Pettke T, Greber N D, von Niederhäusern B, Nägler T F. 2014. Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc). Lithos, 190-191: 440–448

    Article  Google Scholar 

  • Wang D, Aller R C, Sañudo-Wilhelmy S A. 2011. Redox speciation and early diagenetic behavior of dissolved molybdenum in sulfidic muds. Mar Chem, 125: 101–107

    Article  Google Scholar 

  • Wasylenki L E, Rolfe B A, Weeks C L, Spiro T G, Anbar A D. 2008. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta, 72: 5997–6005

    Article  Google Scholar 

  • Wen H, Carignan J, Zhang Y, Fan H, Cloquet C, Liu S. 2011. Molybdenum isotopic records across the Precambrian-Cambrian boundary. Geology, 39: 775–778

    Article  Google Scholar 

  • Wen H, Fan H, Zhang Y, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim Cosmochim Acta, 164: 1–16

    Article  Google Scholar 

  • Wheat C G, Mottl M J, Rudnicki M. 2002. Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring. Geochim Cosmochim Acta, 66: 3693–3705

    Article  Google Scholar 

  • Wille M, Kramers J D, Nägler T F, Beukes N J, Schröder S, Meisel T, Lacassie J P, Voegelin A R. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta, 71: 2417–2435

    Article  Google Scholar 

  • Wille M, Nägler T F, Lehmann B, Schröder S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453: 767–769

    Article  Google Scholar 

  • Wille M, Nebel O, Van Kranendonk M J, Schoenberg R, Kleinhanns I C, Ellwood M J. 2013. Mo-Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76 Ga black shales from the Pilbara, Western Australia. Chem Geol, 340: 68–76

    Article  Google Scholar 

  • Xu L, Lehmann B, Mao J, Nägler T F, Neubert N, Böttcher M E, Escher P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chem Geol, 318-319: 45–59

    Article  Google Scholar 

  • Zerkle A L, Scheiderich K, Maresca J A, Liermann L J, Brantley S L. 2011. Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2 fixation. Geobiology, 9: 94–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Li, C., Zhou, L. et al. Mo marine geochemistry and reconstruction of ancient ocean redox states. Sci. China Earth Sci. 58, 2123–2133 (2015). https://doi.org/10.1007/s11430-015-5177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5177-4

Keywords

Navigation