Skip to main content
Log in

Timing, scale and mechanism of the destruction of the North China Craton

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The North China Craton (NCC) is a classical example of ancient destroyed cratons. Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China, numerous studies have been conducted on the timing, scale, and mechanism of this destruction through combined interdisciplinary research. Available data suggest that the destruction occurred mainly in the eastern NCC, whereas the western NCC was only locally modified. The sedimentation, magmatic activities and structural deformation after cratonization at ∼1.8 Ga indicate that the NCC destruction took place in the Mesozoic with a peak age of ca 125 Ma. A global comparison suggests that most cratons on Earth are not destroyed, although they have commonly experienced lithospheric thinning; destruction is likely to occur only when the craton has been disturbed by oceanic subduction. The destruction of the NCC was coincident with globally active plate tectonics and high mantle temperatures during the Cretaceous. The subducted Pacific slab destabilized mantle convection beneath the eastern NCC, which resulted in cratonic destruction in the eastern NCC. Delamination and/or thermal-mechanical-chemical erosion resulted from the destabilization of mantle convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 1995, 33: 267–309

    Article  Google Scholar 

  2. Pearson D G. The age of continental roots. Lithos, 1999, 48: 171–194

    Article  Google Scholar 

  3. Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 2001, 409: 175–178

    Article  Google Scholar 

  4. Chi J S, Lu F X. Kimberlites and the Features of Paleozoic Lithospheric Mantle in North China Craton. Beijing: Science Press, 1996. 292

    Google Scholar 

  5. Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth, 2001, 26: 747–757

    Article  Google Scholar 

  6. Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 2002, 198: 307–322

    Article  Google Scholar 

  7. Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 2003, 23: 125–152

    Article  Google Scholar 

  8. Wong W H. Crustal movements and igneous activities in eastern China since Mesozoic time. Acta Geol Sin, 1927, 6: 9–37

    Google Scholar 

  9. Chen G D. Examples of “activated region” in Chinese Plateform with special reference to the “Cathaysia” problem. Acta Geol Sin, 1956, 36: 239–272

    Google Scholar 

  10. Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotecton Metall, 1992, 16: 171–180

    Google Scholar 

  11. Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al. Magmatic Processes and Plate Tectonics. Geol Soc Special Publ, 1993, 76: 71–78

  12. Deng J F, Mo X X, Zhao H L, et al. Lithosphere root/de-rooting and activation of the east China Continent (in Chinese with English abstract). Geoscience, 1994, 8: 349–356

    Google Scholar 

  13. Griffin W L, Zhang A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 107–126

  14. Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton: Where is the Archaean keel? J Petrol, 2000, 41: 933–950

    Article  Google Scholar 

  15. Zheng J P, O’Reilly S Y, Griffin W. Relict refractory mantle beneath the eastern North China Block: Significance for lithosphere evolution. Lithos, 2001, 57: 43–66

    Article  Google Scholar 

  16. Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609–637

    Article  Google Scholar 

  17. Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean Craton. Earth Planet Sci Lett, 2005, 237: 768–780

    Article  Google Scholar 

  18. Ying J F, Zhang H F, Kita N, et al. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth Planet Sci Lett, 2006, 244: 622–638

    Article  Google Scholar 

  19. Wu F Y, Xu Y G, Gao S, et al. Controversial on studies of the lithospheric thinning and craton destruction of North China. Acta Petrol Sin, 2008, 24: 1145–1174

    Google Scholar 

  20. Yang J H, Wu F Y, Wilde S A, et al. Mesozoic decratonization of the North China Block. Geology, 2008, 36: 467–470

    Article  Google Scholar 

  21. Zhao Y, Chen B, Zhang S H, et al. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas. Geol China, 2010, 37: 900–915

    Google Scholar 

  22. Li H K, Lu S N, Li H M, et al. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China (in Chinese). Geol Bull China, 2009, 28: 1396–1404

    Google Scholar 

  23. Zhang S H, Zhao Y, Yang Z Y, et al. The 1.35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) Supercontinent. Earth Planet Sci Lett, 2009, 288: 588–600

    Article  Google Scholar 

  24. Wu F Y, Lin J Q, Simon A W, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103–119

    Article  Google Scholar 

  25. Liu J L, Davis G A, Lin Z Y, et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 2005, 407: 65–80

    Article  Google Scholar 

  26. Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geol Soc Am Bull, 2007, 119: 1405–1414

    Article  Google Scholar 

  27. Lin W, Faure M, Monie P, et al. Mesozoic extensional tectonics in Eastern margin of Eurasia Continent, the case study of South-Liaodong peninsula dome, NE China. J Geol, 2008, 116: 134–154

    Article  Google Scholar 

  28. Zhu R X, Shao J A, Pan Y X, et al. Paleomagnetic data from the Early Cretaceous volcanic rocks of West Liaoning: Evidence for intra-continental rotation. Chin Sci Bull, 2002, 47: 1832–1837

    Article  Google Scholar 

  29. Lin W, Chen Y, Faure M, et al. Tectonic implications of new Late Cretaceous paleomagnetic constraints from East Liaoning Peninsula, NE China. J Geophys Res, 2003, 108(B6): 2313, doi: 10.1029/2002JB002169

    Article  Google Scholar 

  30. Huang B C, Piper J D A, Zhang C X, et al. Paleomagnetism of Cretaceous rocks in the Jiaodong Peninsula, eastern China: Insight into block rotations and neotectonic deformation in eastern Asia. J Geophys Res, 2007, 112: B03106, doi: 10.1029/2006JB004462

    Article  Google Scholar 

  31. Zheng T, Chen L, Zhao L, et al. Crust-mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust. Phys Earth Planet Inter, 2006, 159: 43–58

    Article  Google Scholar 

  32. Zheng T Y, Chen L, Zhao L, et al. Crustal structure across the Yanshan belt at the northern margin of the North China Craton. Phys Earth Planet Inter, 2007, 161: 36–49

    Article  Google Scholar 

  33. Zheng T Y, Zhao L, Xu W W, et al. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary. Geophys Res Lett, 2008, 35: L08303, doi: 10.1029/2008GL033439

    Article  Google Scholar 

  34. Zheng T Y, Zhao L, Xu W W, et al. Insight into modification of North China Craton from seismological study in the Shandong Province. Geophys Res Lett, 2008, 35: L22305, doi: 10.1029/2008GL035661

    Article  Google Scholar 

  35. Zheng T Y, Zhao L, Zhu R X. New evidence from seismic imaging for subduction during assembly of the North China Craton. Geology, 2009, 37: 395–398

    Article  Google Scholar 

  36. Zhu R X, Zheng T Y. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 2009, 54: 3354–3366

    Article  Google Scholar 

  37. Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111: B09312, doi: 10.1029/2005JB003974

    Article  Google Scholar 

  38. Chen L, Wang T, Zhao L, et al. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 2008, 267: 56–68

    Article  Google Scholar 

  39. Chen L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys Earth Planet Inter, 2009, 173: 216–227

    Article  Google Scholar 

  40. Chen L, Cheng C, Wei Z G. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet Sci Lett, 2009, 286: 171–183

    Article  Google Scholar 

  41. Menzies M A, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1–21

    Article  Google Scholar 

  42. Ai Y S, Zheng T Y. The upper mantle discontinuity structure beneath eastern China. Geophys Res Lett, 2003, 30: 2089, doi: 10.1029/2003GL017678

    Article  Google Scholar 

  43. Ai Y S, Zheng, T Y, Xu W W, et al. Small scale hot upwelling near the North Yellow Sea of eastern China. Geophys Res Lett, 2008, 35: L20305, doi: 10.1029/2008GL035269

    Article  Google Scholar 

  44. Chen L, Ai Y S. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res, 2009, 114: B06307, doi: 10.1029/2008JB006221

    Article  Google Scholar 

  45. Xu W W, Zheng T Y, Zhao L. Mantle dynamics of the reactivating North China Craton: Constraints from the topographies of the 410 km and 660 km discontinuities. Sci China-Earth Sci, 2011, 54: 881–887

    Google Scholar 

  46. Huang J L, Zhao D P. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 2006, 111: B09305, doi: 10.1029/2005JB004066

    Article  Google Scholar 

  47. Ringwood A E. Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta, 1991, 55: 2083–2110

    Article  Google Scholar 

  48. Bina C, Helffrich G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res, 1994, 99(B8): 15853–15860

    Article  Google Scholar 

  49. Fei Y, Van Orman J, Li J, et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res, 2004, 109(B2), doi: 10.1029/2003JB002562

  50. Karmalkar N R, Duraiswami R A, Chalapathi Rao N V, et al. Mantle-derived mafic-ultramafic xenoliths and the nature of Indian sub-continental lithosphere. J Geol Soc India, 2009, 73: 657–679

    Article  Google Scholar 

  51. Griffin W L, Kobussen A F, Babu E V S S K, et al. A translithospheric suture in the vanished 1-Ga lithospheric root of South India: Evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos, 2009, 112S: 1109–1119

    Article  Google Scholar 

  52. Lehmann B, Burgess R, Frei D, et al. Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth Planet Sci Lett, 2010, 290: 142–149

    Article  Google Scholar 

  53. Carlson R W, Boyd F R, Shirey S B, et al. Continental growth, preservation, and modification in Southern Africa. GSA Today, 2000, 10: 1–7

    Google Scholar 

  54. Griffin W L, Graham S, O’Reilly S Y, et al. Lithosphere evolution beneath the Kaapvaal Craton: Re-Os systematics of sulfides in mantle-derived peridotites. Chem Geol, 2004, 208: 89–118

    Article  Google Scholar 

  55. King S D. Archean cratons and mantle dynamics. Earth Planet Sci Lett, 2005, 234: 1–14

    Article  Google Scholar 

  56. Hieronymus C F, Shomali Z H, Pedersen L B A. Dynamical model for generating sharp seismic velocity contrasts underneath continents: Application to the Sorgenfrei-Tornquist Zone. Earth Planet Sci Lett, 2007, 262: 77–91

    Article  Google Scholar 

  57. Petitjean S, Rabinowicz M, Grégoire M, et al. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity. Geochem Geophys Geosys, 2006, 7: Q03021, doi: 10.1029/2005GC001053

    Article  Google Scholar 

  58. Sonder L J, Jones C H. Western United States extension: How the West was widened. Annu Rev Earth Planet Sci, 1999, 27: 417–462

    Article  Google Scholar 

  59. Zandt G, Gilbert H, Owens T J, et al. Active foundering of a continental arc root beneath the Southern Sierra Nevada, California. Nature, 2004, 431: 41–46

    Article  Google Scholar 

  60. Boyd O S, Jones C H, Sheehan A F. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science, 2006, 305: 660–662

    Article  Google Scholar 

  61. Xu Y G, Li H Y, Pang C J, et al. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 2009, 54: 3379–3396

    Article  Google Scholar 

  62. Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 2007, 262: 533–542

    Article  Google Scholar 

  63. Bartolini A, Larson R L. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic. Geology, 2001, 29: 735–738

    Article  Google Scholar 

  64. Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 2002, 344: 175–205

    Article  Google Scholar 

  65. Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 1991, 19: 547–550

    Article  Google Scholar 

  66. Machetel P, Humler E. High temperature during Cretaceous avalanche. Earth Planet Sci Lett, 2003, 208: 125–133

    Article  Google Scholar 

  67. Wilde S A, Zhou X H, Nemchin A A, et al. Mesozoic crust-mantle beneath the North China Craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31: 817–820

    Article  Google Scholar 

  68. Maruyama S, Seno T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 1986, 127: 305–329

    Article  Google Scholar 

  69. Humler E, Langmuir C, Daux V. Depth versus age: New perspective from the chemical compositions of ancient crust. Earth Planet Sci Lett, 1999, 173: 7–23

    Article  Google Scholar 

  70. Revenaugh J, Jordan T H. Mantle layering from ScS reverberations: 2 The transition zone. J Geophys Res, 1991, 96: 19763–19780

    Article  Google Scholar 

  71. Chen L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 2010, 120: 96–115

    Article  Google Scholar 

  72. Tommasi A, Gibert B, Seipold U, et al. Anisotropy of thermal diffusivity in the upper mantle. Nature, 2001, 411: 783–786

    Article  Google Scholar 

  73. Vauchez A, Barruol G, Tommasi A. Why do continents break up parallel to ancient orogenic belts? Terra Nova, 1997, 9: 62–66

    Article  Google Scholar 

  74. Fouch M J, James D E, VanDecar J C, et al. The Kaapvaal seismic group, mantle seismic structure beneath the Kaapvaal and Zimbabwe cratons. South African J Geol, 2004, 107: 33–44

    Article  Google Scholar 

  75. Gregersen S, Voss P, Nielsen L V, et al. Uniqueness of modeling results from teleseismic P-wave tomography in Project Tor. Tectonophysics, 2010, 481: 99–107

    Article  Google Scholar 

  76. Lesne O, Calais E, Deverchère J, et al. Dynamics of intracontinental extension in the north Baikal rift from two-dimensional numerical deformation modeling. J Geophys Res, 2000, 105: 21727–21744

    Article  Google Scholar 

  77. Burke K, Ashwal L D, Webb S J. New way to map old sutures using deformed alkaline rocks and carbonatites. Geology, 2003, 31: 391–394

    Article  Google Scholar 

  78. Barruol G, Silver P G, Vauchez A. A Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate. J Geophys Res, 1997, 102: 8329–8348

    Article  Google Scholar 

  79. Yuan H, Romanowicz B. Lithospheric layering in the North American Craton. Nature, 2010, 466: 1063–1068

    Article  Google Scholar 

  80. Lenardic A, Moresi L N, Muhlhaus H. Longevity and stability of cratonic lithosphere: Insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res, 2003, 108: 10.1029/2002JB001859

    Article  Google Scholar 

  81. Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 2005, 43: RG1001, doi: 10.1029/2004RG000156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RiXiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, R., Chen, L., Wu, F. et al. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011). https://doi.org/10.1007/s11430-011-4203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4203-4

Keywords

Navigation