Skip to main content
Log in

Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348: 232–234

    Article  Google Scholar 

  2. Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cy, 1995, 9: 23–36

    Article  Google Scholar 

  3. Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982, 298: 156–159

    Article  Google Scholar 

  4. Trumbore S E. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA, 1997, 94: 8284–8291

    Article  Google Scholar 

  5. Liu Y F, Ou Y H, Cao G. M, et al. Soil carbon emission from ecosystems of eastern Tibetan Plateau. J Nat Res (in Chinese), 2001, 16(2): 152–160

    Google Scholar 

  6. Pei Z Y, Ou Y H, Zhou C P. A study on carbon f luxes from alpine grassland ecosystem on Tibetan Plateau. Acta Ecol Sin (in Chinese), 2003, 23(2): 231–236

    Google Scholar 

  7. Liu Y F, Ou Y H, Zhang X Z, et al. Carbon Balance in Agro-Ecosystem in Tibetan Plateau. Acta Pedol Sin (in Chinese), 2002, 39(5): 636–642

    Google Scholar 

  8. Zhang X Z, Shi P L, Liu Y F, et al. Experimental study on soil CO2 emission in the alpine grassland ecosystem on Tibetan Plateau. Sci China Ser D-Earth Sci, 2005, 48(Suppl. 1): 218–224

    Google Scholar 

  9. Zhang J X, Cao G. M, Zhou D W, et al. Diel and seasonal changes of carbon dioxide emission from mollic-cryic cambisols on degraded grassland. Acta Pedol Sin (in Chinese), 2001, 38(1): 32–39

    Google Scholar 

  10. Cao G. M, Li Y N, Zhang J X, et al. Values of Carbon Dioxide Emission from Different Land-use Patterns of Alpine Meadow. Environ Sci (in Chinese), 2001, 22(6): 14–19

    Google Scholar 

  11. Fang J Y, Liu G H, Xu S L. Carbon pool of terrestrial ecosystem in China. In: Wang G C, Wen Y P. eds. Monitoring of Greenhouse Gas Concentration and Emission and Relevant Processes (in Chinese). Beijing: China Environmental Science Press, 1996. 109–128

    Google Scholar 

  12. Wang G X, Cheng G D, Shen Y P. Soil Organic Carbon Pool of Grasslands on the Tibetan Plateau and Its Global Implication. J Glacio Geocryo (in Chinese), 2002, 24(6): 693–700

    Google Scholar 

  13. Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China. Sci China Ser D-Earth Sci, 2004, 47(1): 49–57

    Article  Google Scholar 

  14. Wang S Q, Zhou C H. Estimating soil carbon reservior of terrestrial ecosystem in China. Geogr Res (in Chinese), 1999, 18(4): 349–356

    Google Scholar 

  15. Wang S Q, Zhou C H, Li K R, et al. Analysis on Spatial Distribution Characteristics of Soil Organic Carbon Reservoir in China. Acta Geogr Sin (in Chinese), 2000, 55(5): 533–544

    Google Scholar 

  16. Xie X L, Sun B, Zhou H Z., et al. Organic carbon density and storage in soils of china and spatial analysis. Acta Pedologica Sinica (in Chinese), 2004, 41(1): 35–43

    Google Scholar 

  17. Zhao L, Li Y N, Zhao X Q, et al. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chin Sci Bull, 2005, 50(16): 1767–1774

    Article  Google Scholar 

  18. Li Y N, Wang X Q, Gu S, et al. Integrated Monitoring of Alpine Vegetation Types and its Primary Production. Acta Geogr Sin (in Chinese), 2004, 59(1): 40–48

    Google Scholar 

  19. Zhang X S. The plateau zonation of vegetation in Xizang. Acta Bot Sin (in Chinese), 1978, 20(2): 140–149

    Google Scholar 

  20. Zhou X M, Li J H. The principal vegetation types and their distribution in the in the Haibei Research Station of Alpine Meadow Ecosystem. In: Xia W P, ed. Alpine Meadow Ecosystem (in Chinese). Lanzhou: Gansu People’s Press, 1982. 9–18

    Google Scholar 

  21. Zhang Y S, Zhou X M, Wang Q J. A Preliminary Analysis of Production Performance of Oat (Avena sativa) at Alpine Meadow Pasture. Acta Agrestia Sinica (in Chinese), 1998, 16(2): 115–123

    Google Scholar 

  22. Wang Y, Ronald A, Trumbore S E. The impact of land use change on C turnover in soils. Global Biogeochem Cy, 1999, 13(1): 47–57

    Article  Google Scholar 

  23. Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci Soc Am J, 1994, 58: 175–180

    Article  Google Scholar 

  24. Trumbore S, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 1996, 272: 393–396

    Article  Google Scholar 

  25. Stuiver M, Polach H. Reporting of 14C data. Radiocarbon, 1977, 19: 355–363

    Google Scholar 

  26. Campbell C A, Paul E A, Rennie D A, et al. Applicability of the carbondating method of analysis to soil humus studies. Soil Sci, 1967, 104: 217–224

    Article  Google Scholar 

  27. O’Brien B J, Stout J D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol Biochem, 1978, 10: 309–317

    Article  Google Scholar 

  28. Harrison K, Broecker W, Bonani, G. The effect of changing land use on soil radiocarbon. Science, 1993, 262: 725–726

    Article  Google Scholar 

  29. Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools. Soil Sci Soc Am J, 1993, 57: 1020–1022

    Article  Google Scholar 

  30. Levin I, Kromer B, Schoch-Fischer H, et al. 25 years of tropospheric 14C observations in central Europe. Radiocarbon, 1985, 27: 1–9

    Google Scholar 

  31. Manning M R, Melhuish W H. Atmospheric 14C record from Wellington. In: Trends. A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. 1994

    Google Scholar 

  32. Levin I, Kromer B. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon, 1997, 39(2): 205–218

    Google Scholar 

  33. Cherkinsky A E, Brovkin V A. Dynamics of radiocarbon in soils. Radiocarbon, 1993, 35(3): 363–367

    Google Scholar 

  34. Chen Q Q, Shen C D, Sun Y M. et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. Catena, 2002, 49: 217–29

    Article  Google Scholar 

  35. Li Y N, Wang Q X, Du M Y, et al. A study on replenishment and decomposition of organic matter in Mat-Cryic Cambisols and CO2 flux between vegetation and atmosphere. Acta Agrestia Sinica (in Chinese), 2006, 14(2): 165–169

    Google Scholar 

  36. Cao G M, Li Y N, Bao X K. The water retention property of the Cryic Cambisols in the alpine area. Soil (in Chinese), 1998, (1): 27–30

  37. Gong Z T, et al. Chinese Soil Taxonomy (in Chinese). Beijing: Science Press, 1999. 619–625

    Google Scholar 

  38. The Agriculture Planing Office of Qinghai Province. Soils in Qinghai Province. Beijing: Chinese Agricultural Press, 1997. 340–381

    Google Scholar 

  39. Lavado R S, Sierra J O, Hashimoto P N. Impact of grazing on soil nutrients in a Pampean grassland. J Range Manage, 1996, 49(5): 452–457

    Google Scholar 

  40. Cheng G.W, Luo J. The carbon accumulation and dissipation features of sub-alpine woodland in Mt. Gongga. Acta Geogr Sin (in Chinese), 2003, 58(2): 179–185

    Google Scholar 

  41. Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China. Acta Ecol Sin (in Chinese), 25(11): 2875–2882

  42. Post W M. Organic carbon in soil land the global carbon cycle. In: Heimann M, ed. The Global Carbon Cycle. Berlin: Springer-Verlag Heidelber, 1993. 277–302

    Google Scholar 

  43. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B: 81–99

    Google Scholar 

  44. Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev, 1977, 43: 449–529

    Article  Google Scholar 

  45. Schlesinger W H. Carbon balance in terrestrial detritus. Annu Rev Ecol Syst, 1977, 8: 51–81

    Article  Google Scholar 

  46. Wang G C, Du R, Kong Q X, et al. Experimental study on soil respiration of temperate grassland in China. Chin Sci Bull, 2004, 49(6): 642–646

    Article  Google Scholar 

  47. Mack M C, Schuur E A G, Bret-Harte M S, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 2004, 431: 440–443

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhen.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 06300102)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Z., Shen, C., Gao, Q. et al. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem. SCI CHINA SER D 50, 1103–1114 (2007). https://doi.org/10.1007/s11430-007-0055-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-007-0055-3

Keywords

Navigation