Skip to main content
Log in

Trace element characteristics of partial melts produced by melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Experiments were conducted on a natural basalt (with 5 wt.% added H2O) at 1.0–2.5 GPa and 900–1100°C. Experimental products include partial melts (quenched glasses) + residual mineral assemblages of amphibolite or eclogite. Electron microprobe and LAM-ICP-MS were used to determine major and trace element compositions of these quenched melts, respectively. Major element compositions of all the melts are tonalitic-trondhjemitic, similar to adakite. Their trace element characteristics are controlled by coexisting residual minerals. Signatures of adakite such as high Sr/Y, low HREE and negative Nb-Ta anomaly, etc. are present only in the melts coexisting with residual assemblages containing rutile and garnet (rutile-bearing eclogite or rutile-bearing amphibole-eclogite). Garnet leads to HREE depletion in melts, whereas rutile controls Nb and Ta partitioning during the partial melting and causes negative Nb-Ta anomaly in melts. Therefore, in addition to garnet, rutile is also a necessary residual phase during the generation of adakite or TTG magmas to account for the negative Nb-Ta anomaly of the magmas. The depth for the generation of adakite/TTG magmas via melting of metabasalt must be more than about 50 km based on the approximate 1.5 GPa minimum-pressure for rutile stability in the partial melting field of hydrous basalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 2005, 218: 339–359

    Article  Google Scholar 

  2. Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662–665

    Article  Google Scholar 

  3. Drummond M S, Defant M J, Kepezhinskas P K. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans Royal Soc Edinburgh. Earth Sci, 1996, 87: 205–215

    Google Scholar 

  4. Martin H. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 1999, 46: 411–429

    Article  Google Scholar 

  5. Zhang Q, Wang Y, Qian Q, et al. The characteristics and tectonic-metallogenic significance of the adakites in Yanshan Period from eastern China. Acta Petrol Sin (in Chinese with English abstract), 2001, 17(2): 236–244

    Google Scholar 

  6. Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111–1114

    Article  Google Scholar 

  7. Wang Q, Xu J F, Zhao Z H. Intermediate-acid igneous rocks strongly depleted in heavy rare earth elements (or adakitic rocks) and copper-gold metallogenesis. Earth Sci Front (in Chinese with English abstract), 2003, 10(4): 561–572

    Google Scholar 

  8. Xiong X L, Li X H, Xu J F, et al. Extremely high Na adakite-like magmas derived from lower crust basaltic underplate: the Zhantang andesitc rocks from Huichang Basin, SE China. Geochem J, 2003, 37: 233–252

    Google Scholar 

  9. Xiong X L, Zhao Z H. Adakite-type sodium-rich rocks in Awulale Mountain of west Tianshan: Significance for the vertical growth of continental crust. Chin Sci Bull, 2001, 46(7): 811–817

    Article  Google Scholar 

  10. Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892–897

    Article  Google Scholar 

  11. Green T H. Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe R S. New York: Andesites John Wiley, 1982, 465–487

    Google Scholar 

  12. Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precam Res, 1991, 51: 1–25

    Article  Google Scholar 

  13. Rapp R P. Watson E B. Dehydration melting of metabasalt at 8–32 kbar implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891–931

    Google Scholar 

  14. Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol, 1994, 117: 394–409

    Article  Google Scholar 

  15. Winther K T. An experimentally-based model for the origin of tonalitic and trondhjemitic melts. Chem Geol, 1996, 127: 43–59

    Article  Google Scholar 

  16. Liu J, Bohlen S R, Ernst W G. Stability of hydrous phases in subducting oceanic crust. Earth Planet Sci Lett, 1996, 143: 161–171

    Article  Google Scholar 

  17. Prouteau G, Scaillet B, Pichavent M, et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 2001, 410: 197–200

    Article  Google Scholar 

  18. Rapp R P, Shimizu M D, Norman G S, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol, 1999, 160: 335–356

    Article  Google Scholar 

  19. Foley S F, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 2002, 417: 837–840

    Article  Google Scholar 

  20. Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425: 605–609

    Article  Google Scholar 

  21. Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 1988, 90: 297–314

    Article  Google Scholar 

  22. Green D H. Experimental testing of ‘equilibrium’ partial melting of peridotite under water-saturated, high-pressure conditions. Can Mineral, 1976, 14: 155–168

    Google Scholar 

  23. Parkinson I J, Arculus R J. The redox state of subduction zones: insights from arc-peridotites. Chem Geol, 1999, 160: 409–423

    Article  Google Scholar 

  24. Pouchou J I, Pichoir F. A new model for quantitative X-ray microanalysis: Part I. Application to the analysis of homogeneous samples. Rech Aerosp, 1984, 3: 13–38

    Google Scholar 

  25. Green T H, Adam J. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700°C. Eur J Mineral, 2003, 15: 815–830

    Article  Google Scholar 

  26. Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, 6.9 kbar. J Petrol, 1991, 32: 365–401

    Google Scholar 

  27. Gutscher M A, Muary R C, Eissen J P, et al. Can slab melting be caused by flat subduction? Geology, 2000, 28: 535–538

    Article  Google Scholar 

  28. Yogodzinski G M, Less J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 2001, 409: 500–504

    Article  Google Scholar 

  29. Prouteau G, Scaillet B, Pichavant M, et al. Fluid-present melting of ocean crust in subduction zones. Geology, 1999, 27: 1111–1114

    Article  Google Scholar 

  30. Defant M J, Richerson P M, De Boer J Z, et al. Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada Volcanic Complex, Panama. J Petrol, 1991, 32: 1143–1167

    Google Scholar 

  31. Defant M J, Xu J F, Kepezhinskas P, et al. Adakites: some variations on a theme. Acta Petrol Sin, 2002, 18: 129–142

    Google Scholar 

  32. Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 2000, 182: 115–125

    Article  Google Scholar 

  33. Tiepolo M, Vannucci R, Oberti R, et al. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett, 2001, 176: 185–201

    Article  Google Scholar 

  34. Niu Y, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet Sci Lett, 1997, 148: 471–483

    Article  Google Scholar 

  35. Weyer S, Munker C, Mezger K. Nb/Ta Zr/Hf and REEs in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth Planet Sci Lett, 2003, 205: 309–324

    Article  Google Scholar 

  36. Green T H. Experimental studies of trace element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem Geol, 1994, 117: 1–36

    Article  Google Scholar 

  37. Adam J, Green T H, Sie S H. Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content. Chem Geol, 1993, 109: 29–49

    Article  Google Scholar 

  38. Brenan J M, Shaw H F, Ryerson F J, et al. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet Sci Lett, 1995, 135: 1–11

    Article  Google Scholar 

  39. Klein M, Stosch H, Seck H A. Partitioning of high-field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chem Geol, 1997, 138: 257–271

    Article  Google Scholar 

  40. Foley S F, Barth M G, Jenner G A. Rutile/melt partition coefficients for trace elements and assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta, 2000, 64: 933–938

    Article  Google Scholar 

  41. Schmidt MW, Dardon A, Chazot G, et al. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet Sci Lett, 2004, 226: 415–432

    Article  Google Scholar 

  42. Stalder R, Foley S F, Brey G P, Horn I. Mineral-aqueou fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim Cosmochim Acta, 1998, 62: 1781–1801

    Article  Google Scholar 

  43. Keppler H. Constraints from partitioning experiments on the composition of subduction zone fluids. Nature, 1996, 380: 237–240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Xiaolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X., Adam, J., Green, T.H. et al. Trace element characteristics of partial melts produced by melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts. SCI CHINA SER D 49, 915–925 (2006). https://doi.org/10.1007/s11430-006-0915-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-006-0915-2

Keywords

Navigation