Skip to main content
Log in

An acid-triggered porphyrin-based block copolymer for enhanced photodynamic antibacterial efficacy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bacterial infection, especially multidrug-resistant (MDR) bacterial infection has threatened public health drastically. Here, we fabricate an “acid-triggered” nanoplatform for enhanced photodynamic antibacterial activity by reducing the aggregation of photosensitizers (PSs) in bacterial acidic microenvironment. Specifically, a functional amphiphilic block copolymer was first synthesized by using a pH-sensitive monomer, 2-(diisopropylamino) ethyl methacrylate (DPA) and porphyrin-based methacrylate (TPPC6MA) with poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) as the macromolecular chain transfer agent, and POEGMA-b-[PDPA-co-PTPPC6MA] block copolymer was further self-assembled into spherical nanoparticles (PDPA-TPP). PDPA-TPP nanoparticles possess an effective electrostatic adherence to negatively charged bacterial cell membrane, since they could rapidly achieve positive charge in acidic bacterial media. Meanwhile, the acid-triggered dissociation of PDPA-TPP nanoparticles could reduce the aggregation caused quenching (ACQ) of the photosensitizers, leading to around 5 folds increase of the singlet oxygen (1O2) quantum yield. In vitro results demonstrated that the “acid-triggered” PDPA-TPP nanoparticles could kill most of MDR S. aureus (Gram-positive) and MDR E. coli (Gram-negative) by enhanced photodynamic therapy, and they could resist wound infection and accelerate wound healing effectively in vivo. Furthermore, PDPA-TPP nanoparticles could well disperse the biofilm and almost kill all the biofilm-containing bacteria. Thus, by making use of the bacterial acidic microenvironment, this “acid-triggered” nanoplatform in situ will open a new path to solve the aggregation of photosensitizers for combating broad-spectrum drug-resistant bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu M, Khan A, Wang T, Song Q, Han C, Wang Q, Gao L, Huang X, Li P, Huang W. ACS Appl Bio Mater, 2019, 2: 3329–3340

    Article  CAS  Google Scholar 

  2. Chen H, Li M, Liu Z, Hu R, Li S, Guo Y, Lv F, Liu L, Wang Y, Yi Y, Wang S. Sci China Chem, 2017, 61: 113–117

    Article  Google Scholar 

  3. He H, Du L, Tan M, Chen Y, Lu L, An Y, Wang Y, Li X, Li B, Shen J, Wu J, Shuai X. Sci China Chem, 2020, 63: 936–945

    Article  CAS  Google Scholar 

  4. Li R, Wang Z, Lian X, Hu X, Wang Y. CCS Chem, 2020, 2: 245–256

    Article  CAS  Google Scholar 

  5. Deng JR, Zhao CL, Wu YX. Chin J Polym Sci, 2020, 38: 704–714

    Article  CAS  Google Scholar 

  6. Gao G, Jiang YW, Jia HR, Wu FG. Biomaterials, 2019, 188: 83–95

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Zhang X, Lin F, Guo Y, Wu FG. Small, 2019, 15: 1901647

    Article  Google Scholar 

  8. Zhu X, Jun Loh X. Biomater Sci, 2015, 3: 1505–1518

    Article  CAS  PubMed  Google Scholar 

  9. Abee T, Kovács AT, Kuipers OP, van der Veen S. Curr Opin Biotech, 2011, 22: 172–179

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Lin A, Liu J, Chen X, Zhu X, Gong Y, Yuan G, Chen L, Liu J. ACS Appl Mater Interfaces, 2019, 11: 26590–26606

    Article  CAS  PubMed  Google Scholar 

  11. Dai X, Chen X, Zhao Y, Yu Y, Wei X, Zhang X, Li C. Biomacromolecules, 2018, 19: 141–149

    Article  CAS  PubMed  Google Scholar 

  12. Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Kjelleberg S, Tolker-Nielsen T, Givskov M, Yang L. Nat Commun, 2014, 5: 4462

    Article  CAS  PubMed  Google Scholar 

  13. Hu D, Deng Y, Jia F, Jin Q, Ji J. ACS Nano, 2020, 14: 347–359

    Article  CAS  PubMed  Google Scholar 

  14. Ganewatta MS, Miller KP, Singleton SP, Mehrpouya-Bahrami P, Chen YP, Yan Y, Nagarkatti M, Nagarkatti P, Decho AW, Tang C. Biomacromolecules, 2015, 16: 3336–3344

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Shen X, Ma S, Guo Q, Zhang W, Cheng L, Ding L, Xu Z, Jiang J, Gao L. Biomater Sci, 2020, 8: 2447–2458

    Article  CAS  PubMed  Google Scholar 

  16. Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB. Adv Mater, 2012, 24: 4130–4137

    Article  CAS  PubMed  Google Scholar 

  17. Liu R, Chen X, Chakraborty S, Lemke JJ, Hayouka Z, Chow C, Welch RA, Weisblum B, Masters KS, Gellman SH. J Am Chem Soc, 2014, 136: 4410–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ. Biotechnol Bioeng, 2014, 111: 37–49

    Article  CAS  PubMed  Google Scholar 

  19. Xi Y, Song T, Tang S, Wang N, Du J. Biomacromolecules, 2016, 17: 3922–3930

    Article  CAS  PubMed  Google Scholar 

  20. Mattheis C, Wang H, Meister C, Agarwal S. Macromol Biosci, 2013, 13: 242–255

    Article  CAS  PubMed  Google Scholar 

  21. Tan L, Maji S, Mattheis C, Zheng M, Chen Y, Caballero-Díaz E, Gil PR, Parak WJ, Greiner A, Agarwal S. Macromol Biosci, 2012, 12: 1068–1076

    Article  CAS  PubMed  Google Scholar 

  22. Xiao F, Cao B, Wang C, Guo X, Li M, Xing D, Hu X. ACS Nano, 2019, 13: 1511–1525

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Adv Mater, 2018, 1805092

  24. Yang X, Li J, Yu Y, Wang J, Li D, Cao Z, Yang X. Sci China Chem, 2019, 62: 1379–1386

    Article  CAS  Google Scholar 

  25. Zhang T, Guo J, Ding Y, Mao H, Yan F. Sci China Chem, 2018, 62: 95–104

    Article  Google Scholar 

  26. Zhu ZH, Hu Q, Pan HL, Zhang Y, Xu H, Kurmoo M, Huang J, Zeng MH. Sci China Chem, 2019, 62: 719–726

    Article  CAS  Google Scholar 

  27. Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Chu PK, Wu S. Biomater Sci, 2018, 6: 2110–2121

    Article  CAS  PubMed  Google Scholar 

  28. Xu F, Hu M, Liu C, Choi SK. Biomater Sci, 2017, 5: 678–685

    Article  CAS  PubMed  Google Scholar 

  29. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJ, Sibata CH. Photodiagnosis Photodynamic Ther, 2004, 1: 27–42

    Article  CAS  Google Scholar 

  30. Zhou L, He B, Huang J. Chem Commun, 2013, 49: 8078–8080

    Article  CAS  Google Scholar 

  31. Bing W, Sun H, Wang F, Song Y, Ren J. J Mater Chem B, 2018, 6: 4602–4609

    Article  CAS  PubMed  Google Scholar 

  32. Gao LZ, Giglio KM, Nelson JL, Sondermann H, Travis AJ. Nanoscale, 2014, 6: 2588–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia HR, Zhu YX, Chen Z, Wu FG. ACS Appl Mater Interfaces, 2017, 9: 15943–15951

    Article  CAS  PubMed  Google Scholar 

  34. Gao H, Zhang X, Chen C, Li K, Ding D. Adv Biosys, 2018, 2: 1800074

    Article  Google Scholar 

  35. Escudero C, Crusats J, Díez-Pérez I, El-Hachemi Z, Ribó JM. Angew Chem Int Ed, 2006, 45: 8032–8035

    Article  CAS  Google Scholar 

  36. Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Nano Lett, 2019, 19: 318–330

    Article  CAS  PubMed  Google Scholar 

  37. Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Nat Commun, 2018, 9: 1848

    Article  PubMed  PubMed Central  Google Scholar 

  38. Helmich F, Lee CC, Nieuwenhuizen MML, Gielen JC, Christianen PCM, Larsen A, Fytas G, Leclère PELG, Schenning APHJ, Meijer EW. Angew Chem Int Ed, 2010, 49: 3939–3942

    Article  CAS  Google Scholar 

  39. Kuimova MK, Yahioglu G, Ogilby PR. J Am Chem Soc, 2009, 131: 332–340

    Article  CAS  PubMed  Google Scholar 

  40. Zhai Y, Busscher HJ, Liu Y, Zhang Z, van Kooten TG, Su L, Zhang Y, Liu J, Liu J, An Y, Shi L. Biomacromolecules, 2018, 19: 2023–2033

    Article  CAS  PubMed  Google Scholar 

  41. Davies DG, Marques CNH. J Bacteriol, 2009, 191: 1393–1403

    Article  CAS  PubMed  Google Scholar 

  42. Hu J, Quan Y, Lai Y, Zheng Z, Hu Z, Wang X, Dai T, Zhang Q, Cheng Y. J Control Release, 2017, 247: 145–152

    Article  CAS  PubMed  Google Scholar 

  43. Korupalli C, Huang CC, Lin WC, Pan WY, Lin PY, Wan WL, Li MJ, Chang Y, Sung HW. Biomaterials, 2017, 116: 1–9

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. Adv Mater, 2019, 31: 1806024

    Article  Google Scholar 

  45. Xu L, Liu L, Liu F, Cai H, Zhang W. Polym Chem, 2015, 6: 2945–2954

    Article  CAS  Google Scholar 

  46. Chien MP, Thompson MP, Lin EC, Gianneschi NC. Chem Sci, 2012, 3: 2690–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Chen X, Yang J, Jia HR, Li YH, Chen Z, Wu FG. Adv Funct Mater, 2016, 26: 5958–5970

    Article  CAS  Google Scholar 

  48. Yadav Y, Levitz A, Dharma S, Aneja R, Henary M. Dyes Pigments, 2017, 145: 307–314

    Article  CAS  Google Scholar 

  49. Ji H, Dong K, Yan Z, Ding C, Chen Z, Ren J, Qu X. Small, 2016, 12: 6200–6206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21875063), and the Science and Technology Commission of Shanghai Municipality for the Shanghai International Cooperation Program (19440710600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weian Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Chen, C., Yang, G. et al. An acid-triggered porphyrin-based block copolymer for enhanced photodynamic antibacterial efficacy. Sci. China Chem. 64, 459–466 (2021). https://doi.org/10.1007/s11426-020-9904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9904-7

Navigation