Skip to main content
Log in

Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The pursuit for batteries with high specific energy provokes the research of high-voltage/capacity cathode materials with superior stability and safety as the alternative for lithium iron phosphate. Herein, using the sol-gel method, a lithium vanadium phosphate with higher average discharge voltage (3.8 V, vs. Li+/Li) was obtained from a single source for Mg2+ and Cl co-substitution and uniform carbon coating, and a nearly theoretical capacity (130.1 mA h g−1) and outstanding rate performance (25 C) are acquired together with splendid capacity retention (80%) after 650 cycles. This work reveals that the well-sized anion and cation substitution and uniform carbon coating are of both importance to accelerate kinetic performance in the context of nearly undisturbed crystal structure for other analogue materials. It is anticipated that the electrochemistry comprehension will shed light on preparing cathode materials with high energy density in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533–548

    CAS  Google Scholar 

  2. Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Quo YG, Wan LJ. Sci China Chem, 2019, 62: 1286–1299

    CAS  Google Scholar 

  3. Turcheniuk K, Bondarev D, Singhal V, Yushin G. Nature, 2018, 559: 467–470

    CAS  PubMed  Google Scholar 

  4. Jian Z, Hu YS, Ji X, Chen W. Adv Mater, 2017, 29: 1601925

    Google Scholar 

  5. Liu C, Masse R, Nan X, Cao G. Energy Storage Mater, 2016, 4: 15–58

    Google Scholar 

  6. Zhang X, Ma J, Hu P, Chen B, Lu C, Zhou X, Han P, Chen L, Cui G. J Energy Chem, 2019, 32: 1–7

    CAS  Google Scholar 

  7. Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546–1553

    CAS  Google Scholar 

  8. Padhi AK, Nanjundaswamy KS, Goodenough JB. J Electrochem Soc, 1997, 144: 1188–1194

    CAS  Google Scholar 

  9. Gong Z, Yang Y. Energy Environ Sci, 2011, 4: 3223–3242

    CAS  Google Scholar 

  10. Masquelier C, Croguennec L. Chem Rev, 2013, 113: 6552–6591

    CAS  PubMed  Google Scholar 

  11. Liu Y, Yang B, Dong X, Wang Y, Xia Y. Angew Chem Int Ed, 2017, 56: 16606–16610

    CAS  Google Scholar 

  12. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF. J Am Chem Soc, 2003, 125: 10402–10411

    CAS  PubMed  Google Scholar 

  13. Tan H, Xu L, Geng H, Rui X, Li C, Huang S. Small, 2018, 14: 1800567

    Google Scholar 

  14. Shin J, Yang J, Sergey C, Song MS, Kang YM. Adv Sci, 2017, 4: 1700128

    Google Scholar 

  15. Baboo JP, Song J, Kim S, Jo J, Baek S, Mathew V, Pham DT, Alfaruqi MH, Xiu Z, Sun YK, Kim J. Chem Mater, 2017, 29: 6642–6652

    CAS  Google Scholar 

  16. Su J, Wu XL, Lee JS, Kim J, Guo YG. J Mater Chem A, 2013, 1: 2508–2514

    CAS  Google Scholar 

  17. Xu J, Chou SL, Zhou C, Gu QF, Liu HK, Dou SX. J Power Sources, 2014, 246: 124–131

    CAS  Google Scholar 

  18. Pei B, Jiang Z, Zhang W, Yang Z, Manthiram A. J Power Sources, 2013, 239: 475–482

    CAS  Google Scholar 

  19. Pan A, Liu J, Zhang JG, Xu W, Cao G, Nie Z, Arey BW, Liang S. Electrochem Commun, 2010, 12: 1674–1677

    CAS  Google Scholar 

  20. Rajagopalan R, Zhang L, Dou SX, Liu H. Adv Energy Mater, 2016, 6: 1501760

    Google Scholar 

  21. Ding XK, Zhang LL, Yang XL, Fang H, Zhou YX, Wang JQ, Ma D. ACS Appl Mater Interfaces, 2017, 9: 42788–42796

    CAS  PubMed  Google Scholar 

  22. Zhang X, Kuhnel RS, Hu H, Eder D, Balducci A. Nano Energy, 2015, 12: 207–214

    CAS  Google Scholar 

  23. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM. J Power Sources, 2014, 258: 19–38

    CAS  Google Scholar 

  24. Sun C, Rajasekhara S, Dong Y, Goodenough JB. ACS Appl Mater Interfaces, 2011, 3: 3772–3776

    CAS  PubMed  Google Scholar 

  25. Han DW, Lim SJ, Kim YI, Kang SH, Lee YC, Kang YM. Chem Mater, 2014, 26: 3644–3650

    CAS  Google Scholar 

  26. Sun S, Li R, Mu D, Lin Z, Ji Y, Huo H, Dai C, Ding F. New J Chem, 2018, 42: 13667–13673

    CAS  Google Scholar 

  27. Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, Zhang JP, Guo YG. Adv Mater, 2017, 29: 1701968

    Google Scholar 

  28. Kuganathan N, Chroneos A. Sci Rep, 2019, 9: 333

    PubMed  PubMed Central  Google Scholar 

  29. Lee S, Park SS. J Phys Chem C, 2012, 116: 25190–25197

    CAS  Google Scholar 

  30. Membreño N, Xiao P, Park KS, Goodenough JB, Henkelman G, Stevenson KJ. J Phys Chem C, 2013, 117: 11994–12002

    Google Scholar 

  31. Sauvage F, Quarez E, Tarascon JM, Baudrin E. Solid State Sci, 2006, 8: 1215–1221

    CAS  Google Scholar 

  32. Dai C, Chen Z, Jin H, Hu X. J Power Sources, 2010, 195: 5775–5779

    CAS  Google Scholar 

  33. Qi R, Shi JL, Zhang XD, Zeng XX, Yin YX, Xu J, Chen L, Fu WG, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1230–1235

    CAS  Google Scholar 

  34. Liu BT, Shi XM, Lang XY, Gu L, Wen Z, Zhao M, Jiang Q. Nat Commun, 2018, 9: 1375

    PubMed  PubMed Central  Google Scholar 

  35. Paynter RW, Edgell MJ, Castle JE. J Electron Spectr Related Phenomena, 1986, 40: 1–9

    CAS  Google Scholar 

  36. Seyama H, Soma M. J Chem Soc Faraday Trans 1, 1984, 80: 237–248

    CAS  Google Scholar 

  37. Guo H, Wu C, Xie J, Zhang S, Cao G, Zhao X. J Mater Chem A, 2014, 2: 10581–10588

    CAS  Google Scholar 

  38. Liang JY, Zeng XX, Zhang XD, Wang PF, Ma JY, Yin YX, Wu XW, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 6767–6770

    CAS  PubMed  Google Scholar 

  39. Chen Z, Chen Q, Wang H, Zhang R, Zhou H, Chen L, Whittingham MS. Electrochem Commun, 2014, 46: 67–70

    Google Scholar 

  40. Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ. Adv Energy Mater, 2014, 4: 1300950

    Google Scholar 

  41. Tang K, Yu X, Sun J, Li H, Huang X. Electrochim Acta, 2011, 56: 4869–4875

    CAS  Google Scholar 

  42. Rui XH, Yesibolati N, Li SR, Yuan CC, Chen CH. Solid State Ion, 2011, 187: 58–63

    CAS  Google Scholar 

  43. Cui ZH, Guo XX, Li H. Energy Environ Sci, 2015, 8: 182–187

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Center Project of Natural Science Foundation of China (51788104), the National Natural Science Foundation of China (51803054, 51772093), the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070300), the Natural Science Foundation of Hunan Province (2019JJ50223), and “Double First-Class” School Construction Project and Outstanding Youth Fund of Hunan province (SYL201802008, 2019JJ20010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong-Wei Wu or Yu-Guo Guo.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, XX., Chen, H., Guo, G. et al. Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution. Sci. China Chem. 63, 203–207 (2020). https://doi.org/10.1007/s11426-019-9647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9647-8

Keywords

Navigation