Skip to main content
Log in

Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multi-band microlasers based on single microcrystalline materials with Fabry-Perot (F-P) cavities are critically and technologically essential. Here, we demonstrate simultaneous dual-band lasing output (615 and 685 nm) in metal-organic frameworks (MOFs) and organic dyes hybrid single crystals, which support F-P resonances. Through a two-step assembly strategy, two different types of cationic pyridinium hemicyanine dye molecules can be encapsulated into the channel pores of anionic bio-MOF-1-2Me successfully. In addition, the employment of the host-guest system significantly increases the dye loading, enhances luminescent efficiency, and diminishes the aggregation-caused quenching (ACQ) effect in the resultant MOFs/dye composites. This finding not only combines the characteristic of MOFs materials with excellent luminescent properties of organic dyes, but also points out a simple and promising strategy to design multi-band microlasers based on F-P mechanism, opening a low-cost avenue for the rational design of miniaturized lasers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang RW, Wei YS, Dong XY, Wu XH, Du CX, Zang SQ, Mak TCW. Nat Chem, 2017, 9: 689–697

    Article  CAS  PubMed  Google Scholar 

  2. Wang R, Dong XY, Du J, Zhao JY, Zang SQ. Adv Mater, 2018, 30: 1703711

    Article  CAS  Google Scholar 

  3. Wang HJ, Sha ZJ. Sci China Chem, 2011, 54: 947–950

    Article  CAS  Google Scholar 

  4. Zhu Y, Zhou X, Li L, You Y, Huang W. Sci China Chem, 2017, 60: 1581–1587

    Article  CAS  Google Scholar 

  5. Jiang K, Zhang L, Hu Q, Yue D, Zhang J, Zhang X, Li B, Cui Y, Yang Y, Qian G. Mater Today Nano, 2018, 2: 50–57

    Article  Google Scholar 

  6. Xiao JD, Jiang HL. Acc Chem Res, 2019, 52: 356–366

    Article  CAS  PubMed  Google Scholar 

  7. Yang Q, Yang CC, Lin CH, Jiang HL. Angew Chem Int Ed, 2019, 58: 3511–3515

    Article  CAS  Google Scholar 

  8. Yang Q, Xu Q, Jiang HL. Chem Soc Rev, 2017, 46: 4774–4808

    Article  CAS  PubMed  Google Scholar 

  9. Cui Y, Zhang J, He H, Qian G. Chem Soc Rev, 2018, 47: 5740–5785

    Article  CAS  PubMed  Google Scholar 

  10. He HJ, Cui YJ, Li B, Wang B, Jin CH, Yu JC, Yao LJ, Yang Y, Chen BL, Qian GD. Adv Mater, 2019, 31: e1806897

    PubMed  Google Scholar 

  11. Cheng T, Hu J, Zhou C, Wang Y, Zhang M. Sci China Chem, 2016, 59: 929–947

    Article  CAS  Google Scholar 

  12. Fu HR, Yan LB, Wu NT, Ma LF, Zang SQ. J Mater Chem A, 2018, 6: 9183–9191

    Article  CAS  Google Scholar 

  13. Yu J, Cui Y, Xu H, Yang Y, Wang Z, Chen B, Qian G. Nat Commun, 2013, 4: 2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He H, Ma E, Cui Y, Yu J, Yang Y, Song T, Wu CD, Chen X, Chen B, Qian G. Nat Commun, 2016, 7: 11087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei Y, Dong H, Wei C, Zhang W, Yan Y, Zhao YS. Adv Mater, 2016, 28: 7424–7429

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Dong H, Wang K, Gao Z, Zhang C, Liu X, Zhao YS, Hu F. ACS Appl Mater Interfaces, 2018, 10: 35455–35461

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Dong HY, Liu Y, et al. Chem Comm, 2019

  18. Cui Y, Song T, Yu J, Yang Y, Wang Z, Qian G. Adv Funct Mater, 2015, 25: 4796–4802

    Article  CAS  Google Scholar 

  19. Wang K, Wang S, Xiao S, Song Q. Adv Opt Mater, 2018, 6: 1800278

    Article  CAS  Google Scholar 

  20. Chellappan KV, Erden E, Urey H. Appl Opt, 2010, 49: F79–98

    Article  PubMed  Google Scholar 

  21. Giuliani G, Norgia M, Donati S, Bosch T. J Opt A-Pure Appl Opt, 2002, 4: S283–S294

    Article  Google Scholar 

  22. Zhang T, Talla S, Gong Z, Karandikar S, Giorno R, Que L. Opt Express, 2010, 18: 18394–18400

    Article  CAS  PubMed  Google Scholar 

  23. Zhu H, Chen X, Jin LM, Wang QJ, Wang F, Yu SF. ACS Nano, 2013, 7: 11420–11426

    Article  CAS  PubMed  Google Scholar 

  24. Zhao JY, Yan YL, Zhao YS, Yao JN. Sci Sin Chim, 2018, 48: 127–142

    Article  Google Scholar 

  25. Fan F, Liu Z, Yin L, Nichols PL, Ning H, Turkdogan S, Ning CZ. Semicond Sci Technol, 2013, 28: 065005

    Article  CAS  Google Scholar 

  26. Dong H, Zhang C, Lin X, Zhou Z, Yao J, Zhao YS. Nano Lett, 2017, 17: 91–96

    Article  CAS  PubMed  Google Scholar 

  27. Huang L, Gao Q, Sun LD, Dong H, Shi S, Cai T, Liao Q, Yan CH. Adv Mater, 2018, 30: 1800596

    Article  CAS  Google Scholar 

  28. Du W, Zhang S, Shi J, Chen J, Wu Z, Mi Y, Liu Z, Li Y, Sui X, Wang R, Qiu X, Wu T, Xiao Y, Zhang Q, Liu X. ACS Photonics, 2018, 5: 2051–2059

    Article  CAS  Google Scholar 

  29. Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS. Adv Mater, 2016, 28: 4040–4046

    Article  CAS  PubMed  Google Scholar 

  30. Zhou H, Yuan S, Wang X, Xu T, Wang X, Li H, Zheng W, Fan P, Li Y, Sun L, Pan A. ACS Nano, 2017, 11: 1189–1195

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Ma L, Guo P, Zhuang X, Zhu X, Hu W, Duan X, Pan A. J Am Chem Soc, 2012, 134: 12394–12397

    Article  CAS  PubMed  Google Scholar 

  32. Gupta A, Dai T, Hamblin MR. Lasers Med Sci, 2014, 29: 257–265

    Article  PubMed  Google Scholar 

  33. Weissleder R, Ntziachristos V. Nat Med, 2003, 9: 123–128

    Article  CAS  PubMed  Google Scholar 

  34. Song T, Yu J, Cui Y, Yang Y, Qian G. Dalton Trans, 2016, 45: 4218–4223

    Article  CAS  PubMed  Google Scholar 

  35. An J, Geib SJ, Rosi NL. J Am Chem Soc, 2009, 131: 8376–8377

    Article  CAS  PubMed  Google Scholar 

  36. Ma D, Li Y, Li Z. Chem Commun, 2011, 47: 7377–7379

    Article  CAS  Google Scholar 

  37. Vietze U, Krauß O, Laeri F, Ihlein G, Schüth F, Limburg B, Abraham M. Phys Rev Lett, 1998, 81: 4628–4631

    Article  CAS  Google Scholar 

  38. Anand M, Dharmadhikari AK, Dharmadhikari JA, Mishra A, Mathur D, Krishnamurthy M. Chem Phys Lett, 2003, 372: 263–268

    Article  CAS  Google Scholar 

  39. Blum C, Zijlstra N, Lagendijk A, Wubs M, Mosk AP, Subramaniam V, Vos WL. Phys Rev Lett, 2012, 109: 203601

    Article  CAS  PubMed  Google Scholar 

  40. Ta VD, Yang S, Wang Y, Gao Y, He T, Chen R, Demir HV, Sun H. Appl Phys Lett, 2015, 107: 221103

    Article  CAS  Google Scholar 

  41. Biskup C, Zimmer T, Kelbauskas L, Hoffmann B, Klöcker N, Becker W, Bergmann A, Benndorf K. Microsc Res Tech, 2007, 70: 442–451

    Article  CAS  PubMed  Google Scholar 

  42. Xu Z, Liao Q, Shi X, Li H, Zhang H, Fu H. J Mater Chem B, 2013, 1: 6035

    Article  CAS  Google Scholar 

  43. Gartzia-Rivero L, Bañuelos J, López-Arbeloa I. Int Rev Phys Chem, 2015, 34: 515–556

    Article  CAS  Google Scholar 

  44. Cerdán L, Enciso E, Martin V, Bañuelos J, López-Arbeloa I, Costela A, García-Moreno I. Nat Photon, 2012, 6: 621–626

    Article  CAS  Google Scholar 

  45. Sirbuly DJ, Law M, Yan H, Yang P. J Phys Chem B, 2005, 109: 15190–15213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1609219, 51432001, 51632008, 61721005) and Zhejiang Provincial Natural Science Foundation (LD18E020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Qian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., He, H., Yu, J. et al. Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities. Sci. China Chem. 62, 987–993 (2019). https://doi.org/10.1007/s11426-019-9485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9485-4

Keywords

Navigation