Skip to main content
Log in

Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Gram-staining distinguishes bacteria into two major groups, Gram-positive and Gram-negative bacteria, and has become an essential technique in microbiology. However, Gram-staining is not compatible with living cells and thus limits its applications. Here, we report the development of a polymyxin B-based fluorescent probe that enables selective labeling of Gram-negative in the living microbiota samples. We first synthesized the polymyxin B-Cy3 conjugate and confirmed its specificity for labeling Gram-negative bacteria. In combination with a previously developed Gram-positive-specific fluorescent probe, we demonstrate two-color imaging of Gram-positive and Gram-negative bacteria in various kinds living microbiotas, including mouse gut, human oral, soil, and crude oil microbiotas, with high selectivity and coverage. Finally, a pilot use of the probes in staining bacteria on heat-fixed sputum smear was also demonstrated, showing its potentials in clinical microbiology. Our method provides a versatile tool for distinguishing Gram-positive and Gram-negative bacteria in both basic research and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Beveridge T. Biotech Histochem, 2001, 76: 111–118

    Article  CAS  PubMed  Google Scholar 

  2. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Nature, 2012, 489: 220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forster S, Snape JR, Lappin-Scott HM, Porter J. Appl Environ Microbiol, 2002, 68: 4772–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holm C, Jespersen L. Appl Environ Microbiol, 2003, 69: 2857–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McClelland R. Med Lab Obs, 2001, 33: 20–22

    CAS  Google Scholar 

  6. Gram C. Fortschr Med, 1884, 2: 185–189

    Google Scholar 

  7. Mason DJ, Shanmuganathan S, Mortimer FC, Gant VA. Appl Environ Microbiol, 1998, 64: 2681–2685

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clauß M, Springorum AC, Hartung J. Aerosol Sci Tech, 2012, 46: 818–827

    Article  CAS  Google Scholar 

  9. Sizemore RK, Caldwell JJ, Kendrick AS. Appl Environ Microbiol, 1990, 56: 2245–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kajiwara H, Toda M, Mine T, Nakada H, Wariishi H, Yamamoto T. Microbes Environ, 2010, 25: 152–155

    Article  PubMed  Google Scholar 

  11. Wang W, Zhu Y, Chen X. Biochemistry, 2017, 56: 3889–3893

    Article  CAS  PubMed  Google Scholar 

  12. Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Cold Spring Harb Perspect Med, 2016, 6: a025288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdelraouf K, Chang KT, Yin T, Hu M, Tam VH. Antimicrob Agents Chemother, 2014, 58: 4200–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schindler PRG, Teuber M. Antimicrob Agents Chemother, 1975, 8: 95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore RA, Bates NC, Hancock RE. Antimicrob Agents Chemother, 1986, 29: 496–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deris ZZ, Swarbrick JD, Roberts KD, Azad MAK, Akter J, Horne AS, Nation RL, Rogers KL, Thompson PE, Velkov T, Li J. Bioconjugate Chem, 2014, 25: 750–760

    Article  CAS  Google Scholar 

  17. Moison E, Xie R, Zhang G, Lebar MD, Meredith TC, Kahne D. ACS Chem Biol, 2017, 12: 928–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soon RL, Velkov T, Chiu F, Thompson PE, Kancharla R, Roberts K, Larson I, Nation RL, Li J. Anal Biochem, 2011, 409: 273–283

    Article  CAS  PubMed  Google Scholar 

  19. Azad MAK, Yun B, Roberts KD, Nation RL, Thompson PE, Velkov T, Li J. Antimicrob Agents Chemother, 2014, 58: 6337–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zavascki AP, Goldani LZ, Li J, Nation RL. J Antimicrob Chemother, 2007, 60: 1206–1215

    Article  CAS  PubMed  Google Scholar 

  21. Hancock R. Trends Microbiol, 1997, 5: 37–42

    Article  CAS  PubMed  Google Scholar 

  22. Fierer N, Bradford MA, Jackson RB. Ecology, 2007, 88: 1354–1364

    Article  PubMed  Google Scholar 

  23. Cai M, Nie Y, Chi CQ, Tang YQ, Li Y, Wang XB, Liu ZS, Yang Y, Zhou J, Wu XL. Sci Rep, 2015, 5: 16057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672013, 21425204, 21521003) and the National Key Research and Development Projects (2016YFA0501500). We thank Dr. Xiaolei Wu for providing the crude oil microbiota and the National Center for Protein Sciences Beijing (Peking University, Beijing, China) for help with flow cytometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Xing Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, X. Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas. Sci. China Chem. 61, 792–796 (2018). https://doi.org/10.1007/s11426-018-9236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9236-5

Keywords

Navigation