Skip to main content
Log in

LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC electrolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1−x CoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thevemin J G, Muller R H. Impedance of lithium electrode in a propylene carbonate electrolyte. J Electrochem Soc, 1987, 134(2): 273–280

    Article  Google Scholar 

  2. Peled E, Goldnitsky D, Ardel G. Advanced model for solid electrolyte interphase of lithium electrode in liquid and polymer electrolytes. J Electrochem Soc, 1997, 144(8): L208–L210

    Article  CAS  Google Scholar 

  3. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J Electrochem Soc, 1979, 126(12): 2047–2051

    Article  CAS  Google Scholar 

  4. Aurbach D, Weissman I, Schechter A. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies with previous studies by fourier transform infrared spectroscopy. Langmuir, 1996, 12(16): 3991–4007

    Article  CAS  Google Scholar 

  5. Schechter A, Aurbach D. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir, 1999, 15(9): 3334–3342

    Article  CAS  Google Scholar 

  6. Jong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochim Acta, 2002, 47(12): 1975–1982

    Article  Google Scholar 

  7. Morigaki K I. In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions. J Power Sources, 2002, 103(2): 253–264

    Article  CAS  Google Scholar 

  8. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303–4418

    Article  CAS  Google Scholar 

  9. Würsig A, Buqa H, Holzapfel M, Krumeich F, Novák P. Film formation at positive electrodes in lithium-ion batteries. Electrochem Solid-State Lett, 2005, 8(1): A34–A37

    Article  Google Scholar 

  10. Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Elena Levi E, Kim H J. An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta, 2002, 47(12): 1899–1911

    Article  CAS  Google Scholar 

  11. Liu L, Chen L, Huang X, Yang X, Yoon W S, Lee H S, McBreen J. Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material. J Electrochem Soc, 2004, 151(9): A1344–A1351

    Article  CAS  Google Scholar 

  12. Aurbach D, Gamolsky K, Markovsky B, Salitra S, Gofer Y, Heider U, Oesten R, Schmidt M. The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn). J Electrochem Soc, 2000, 147(4): 1322–1331

    Article  CAS  Google Scholar 

  13. Eriksson T, Andersson A M, Bishop A G, Gejke C, Gustafsson T, Thomas J O. Surface analysis of LiMn2O4 electrodes in carbonatebased electrolytes. J electrochem Soc, 2002, 149(1): A69–A78

    Article  CAS  Google Scholar 

  14. Matsuo Y, Kostecki R, Mclarnon F. Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures. J Electrochem Soc, 2001, 148(7): A687–A692

    Article  CAS  Google Scholar 

  15. Ostrovskii D, Ronci F, Acrosati B, Jacobsson P. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: spontaneous reactions at the electrode-electrolyte interface investigated by FTIR. J Power Sources, 2001, 103(1): 10–17

    Article  CAS  Google Scholar 

  16. Ostrovskii D, Ronci F, Scrosati B, Jacobsson P. A FTIR and Raman study of spontaneous reaction occurring at the LiNiyCo(1−y)O2 electrode/non-aqueous electrolyte interface. J Power Sources, 2001, 94(2): 183–188

    Article  CAS  Google Scholar 

  17. Levi M D, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L. Solid-state electrochemical kinetics of Li-ion intercalation into Li1−x CoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc, 1999, 146(4): 1279–1289

    Article  CAS  Google Scholar 

  18. Levi M D, Gamolsky K, Aurbach D, Levi M D, Gamolsky K, Aurbach D, Heider U, Oesten R. On electrochemical impedance of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes. Electrochim Acta, 2000, 45(11): 1781–1789

    Article  CAS  Google Scholar 

  19. Wang Z, Huang X, Chen L. Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries. J Electrochem Soc, 2004, 151(10): A1641–A1652

    Article  CAS  Google Scholar 

  20. Gnanaraj J S, Thompson R W, Iaconatti S N, DiCarlo J F, Abraham K M. Formation and growth of surface films on graphitic anode materials for Li-ion batteries. Electrochem Solid-State Lett, 2005, 8(2): A128–132

    Article  CAS  Google Scholar 

  21. Montella C. Review and theoretical analysis of ac-av methods for the investigation of hydrogen insertion I. Diffusion formalism. J Electrochem Chem, 1999, 462(2): 73–87

    Article  CAS  Google Scholar 

  22. Holzapfel M, Martinent A, Allion F, Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J Electroanal Chem, 2003, 546: 41–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Shigang.

Additional information

Supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2002CB211804)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, Q., Xu, J., Fan, X. et al. LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy. Sci. China Ser. B-Chem. 50, 776–783 (2007). https://doi.org/10.1007/s11426-007-0088-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0088-7

Keywords

Navigation