Skip to main content
Log in

Global existence of weak solutions to the drift-flux system for general pressure laws

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The initial value problem of the multi-dimensional drift-flux model for two-phase flow is investigated in this paper, and the global existence of weak solutions with finite energy is established for general pressure-density functions without the monotonicity assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett J W, Lu Y, Süli E. Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun Math Sci, 2017, 15: 1265–1323

    Article  MATH  Google Scholar 

  2. Belgacem F B, Jabin P-E. Compactness for nonlinear continuity equations. J Funct Anal, 2013, 264: 139–168

    Article  MATH  Google Scholar 

  3. Brennen C E. Fundamentals of Multiphase Flow. Cambridge: Cambridge University Press, 2005

    Book  MATH  Google Scholar 

  4. Bresch D, Desjardins B. Existence of global weak solutions for 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm Math Phys, 2003, 238: 211–223

    Article  MATH  Google Scholar 

  5. Bresch D, Desjardins B, Gérard-Varet D. On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J Math Pures Appl (9), 2007, 87: 227–235

    Article  MATH  Google Scholar 

  6. Bresch D, Desjardins B, Ghidaglia J-M, et al. Global weak solutions to a generic two-fluid model. Arch Ration Mech Anal, 2010, 196: 599–629

    Article  MATH  Google Scholar 

  7. Bresch D, Desjardins B, Ghidaglia J-M, et al. Multi-fluid models including compressible fluids. In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Cham: Springer, 2017, 1–52

    Google Scholar 

  8. Bresch D, Desjardins B, Lin C-K. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843–868

    Article  MATH  Google Scholar 

  9. Bresch D, Huang X, Li J. Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system. Comm Math Phys, 2012, 309: 737–755

    Article  MATH  Google Scholar 

  10. Bresch D, Jabin P-E. Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann of Math (2), 2018, 188: 577–684

    Article  MATH  Google Scholar 

  11. Bresch D, Mucha P B, Zatorska E. Finite-energy solutions for compressible two-fluid Stokes system. Arch Ration Mech Anal, 2019, 232: 987–1029

    Article  MATH  Google Scholar 

  12. Bresch D, Vasseur A, Yu C. Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities. arXiv:1905.02701, 2019

  13. Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011

    Book  MATH  Google Scholar 

  14. Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315–331

    Article  MATH  Google Scholar 

  15. Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math (2), 1976, 103: 611–635

    Article  MATH  Google Scholar 

  16. Desvillettes L. Some aspects of the modeling at different scales of multiphase flows. Comput Methods Appl Mech Engrg, 2010, 199: 1265–1267

    Article  MATH  Google Scholar 

  17. DiPerna R J, Lions P L. Ordinary differential equations, transport theory and Sobolev spaces. Invent Math, 1989, 98: 511–547

    Article  MATH  Google Scholar 

  18. Evje S. Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells. SIAM J Math Anal, 2011, 43: 1887–1922

    Article  MATH  Google Scholar 

  19. Evje S, Karlsen K H. Global existence of weak solutions for a viscous two-phase model. J Differential Equations, 2008, 245: 2660–2703

    Article  MATH  Google Scholar 

  20. Evje S, Karlsen K H. Global weak solutions for a viscous liquid-gas model with singular pressure law. Commun Pure Appl Anal, 2009, 8: 1867–1894

    Article  MATH  Google Scholar 

  21. Evje S, Wang W, Wen H. Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model. Arch Ration Mech Anal, 2016, 221: 1285–1316

    Article  MATH  Google Scholar 

  22. Evje S, Wen H, Zhu C. On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow. Math Models Methods Appl Sci, 2017, 27: 323–346

    Article  MATH  Google Scholar 

  23. Feireisl E. Compressible Navier-Stokes equations with a non-monotone pressure law. J Differential Equations, 2002, 184: 97–108

    Article  MATH  Google Scholar 

  24. Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26. Oxford: Oxford University Press, 2004

    MATH  Google Scholar 

  25. Feireisl E, Novotný A. Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkhäuser, 2009

    Book  MATH  Google Scholar 

  26. Feireisl E, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358–392

    Article  MATH  Google Scholar 

  27. Gidaspow D. Multiphase Flow and Fluidization. Boston: Academic Press, 1994

    MATH  Google Scholar 

  28. Guo Z, Yang J, Yao L. Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum. J Math Phys, 2001, 52: 093102

    Article  MATH  Google Scholar 

  29. Hao C, Li H. Well-posedness for a multidimensional viscous liquid-gas two-phase flow model. SIAM J Math Anal, 2012, 44: 1304–1332

    Article  MATH  Google Scholar 

  30. Hu X. Hausdorff dimension of concentration for isentropic compressible Navier-Stokes equations. Arch Ration Mech Anal, 2019, 234: 375–416

    Article  MATH  Google Scholar 

  31. Ishii M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-fluid flow regimes. Argonne National Laboratory Report ANL-77-47, 1977

  32. Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. New York: Springer, 2006

    Book  MATH  Google Scholar 

  33. Jiang S, Zhang P. On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm Math Phys, 2001, 215: 559–581

    Article  MATH  Google Scholar 

  34. Li J, Xin Z. Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities. arXiv:1504.06826, 2015

  35. Li Y, Sun Y. Global weak solutions to two-dimensional compressible MHD equations of viscous non-resistive fluids. J Differential Equations, 2019, 267: 3827–3851

    Article  MATH  Google Scholar 

  36. Lions P-L. Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 3. Oxford: Clarendon Press, 1996

    MATH  Google Scholar 

  37. Lions P-L. Mathematical Topics in Fluid Mechanics, Volume 2, Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 10. Oxford: Clarendon Press, 1998

    MATH  Google Scholar 

  38. Maltese D, Michyálek M, Mucha P B, et al. Existence of weak solutions for compressible Navier-Stokes equations with entropy transport. J Differential Equations, 2016, 261: 4448–4485

    Article  MATH  Google Scholar 

  39. Mellet A, Vasseur A. On the isentropic compressible Navier-Stokes equation. Comm Partial Differential Equations, 2007, 32: 431–452

    Article  MATH  Google Scholar 

  40. Mellet A, Vasseur A. Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Comm Math Phys, 2008, 281: 573–596

    Article  MATH  Google Scholar 

  41. Novotný A, Pokorný M. Weak solutions for some compressible multicomponent fluid models. Arch Ration Mech Anal, 2020, 235: 355–403

    Article  MATH  Google Scholar 

  42. Novotný A, Straškraba I. Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and Its Applications, vol. 27. Oxford: Oxford University Press, 2004

    MATH  Google Scholar 

  43. Plotnikov P I, Weigant W. Isothermal Navier-Stokes equations and Radon transform. SIAM J Math Anal, 2015, 47: 626–653

    Article  MATH  Google Scholar 

  44. Vasseur A, Wen H, Yu C. Global weak solution to the viscous two-fluid model with finite energy. J Math Pures Appl (9), 2019, 125: 247–282

    Article  MATH  Google Scholar 

  45. Vasseur A, Yu C. Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent Math, 2016, 206: 935–974

    Article  MATH  Google Scholar 

  46. Wallis G B. One-Dimensional Two-Fluid Flow. New York: McGraw-Hill, 1979

    Google Scholar 

  47. Wang W, Wang W. Large time behavior for the system of a viscous liquid-gas two-phase flow model in ℝ3. J Differential Equations, 2016, 261: 5561–5589

    Article  MATH  Google Scholar 

  48. Wang Y, Wen H, Yao L. On a non-conservative compressible two-fluid model in a bounded domain: Global existence and uniqueness. J Math Fluid Mech, 2021, 23: 1–24

    Article  MATH  Google Scholar 

  49. Wen H. On global solutions to a viscous compressible two-fluid model with unconstrained transition to single-phase flow in three dimensions. Calc Var Partial Differential Equations, 2021, 60: 158

    Article  MATH  Google Scholar 

  50. Wen H, Yao L, Zhu C. Review on mathematical analysis of some two-phase flow models. Acta Math Sci Ser B Engl Ed, 2018, 38: 1617–1636

    Article  MATH  Google Scholar 

  51. Wen H, Zhu C. Remarks on global weak solutions to a two-fluid type model. Commun Pure Appl Anal, 2021, 20: 2839–2856

    Article  MATH  Google Scholar 

  52. Wen H, Zhu L. Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field. J Differential Equations, 2018, 264: 2377–2406

    Article  MATH  Google Scholar 

  53. Yao L, Yang J, Guo Z. Global classical solution for a three-dimensional viscous liquid-gas two-fluid flow model with vacuum. Acta Math Appl Sin Engl Ser, 2014, 30: 989–1006

    Article  MATH  Google Scholar 

  54. Yao L, Zhang T, Zhu C. Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model. SIAM J Math Anal, 2010, 42: 1874–1897

    Article  MATH  Google Scholar 

  55. Yao L, Zhu C. Free boundary value problem for a viscous two-phase model with mass-dependent viscosity. J Differential Equations, 2009, 247: 2705–2739

    Article  MATH  Google Scholar 

  56. Yao L, Zhu C. Existence and uniqueness of global weak solution to a two-phase flow model with vacuum. Math Ann, 2011, 349: 903–928

    Article  MATH  Google Scholar 

  57. Yu H. Global strong solutions to the 3D viscous liquid-gas two-phase flow model. J Differential Equations, 2021, 272: 732–759

    Article  MATH  Google Scholar 

  58. Zhang Y, Zhu C. Global existence and optimal convergence rates for the strong solutions in H2 to the 3D viscous liquid-gas two-phase flow model. J Differential Equations, 2015, 258: 2315–2338

    Article  MATH  Google Scholar 

  59. Zuber N. On the dispersed two-phase flow in the laminar flow regime. Chem Eng Sci, 1964, 19: 897–917

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11931010, 11671384 and 11871047), the key research project of Academy for Multidisciplinary Studies, Capital Normal University, and the Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (Grant No. 007/20530290068). The authors thank the referees for their helpful suggestions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Shou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Shou, L. Global existence of weak solutions to the drift-flux system for general pressure laws. Sci. China Math. 66, 251–284 (2023). https://doi.org/10.1007/s11425-021-1927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1927-8

Keywords

MSC(2020)

Navigation