Skip to main content
Log in

Limiting profile of blow-up solutions for the Gross-Pitaevskii equation

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limiting profile of blow-up solutions with critical mass in the corresponding weighted energy space. Moreover, we extend this result to small super-critical mass case by the variational methods and scaling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross E P. Hydrodynamics of a superfluid condensate. J Math Phys, 4: 195–207 (1963)

    Article  Google Scholar 

  2. Pitaevskii L P. Vortex lines in an imparfect Bose gas. Soc Phys JETP, 13: 451–454 (1961)

    MathSciNet  Google Scholar 

  3. Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys Rev Lett, 78: 985–989 (1997)

    Article  Google Scholar 

  4. Wadati M, Tsurumi T. Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length. Phys Lett A, 247: 287–293 (1998)

    Article  Google Scholar 

  5. Zhang J. Stability of attractive Bose-Einstein condensate. J Stat Phys, 101: 731–746 (2000)

    Article  MATH  Google Scholar 

  6. Ginibre J, Velo G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J Funct Anal, 32: 1–32 (1979)

    MathSciNet  Google Scholar 

  7. Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 18: 1794–1797 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ogawa T, Tsutsumi Y. Blow-up of H 1 solution for the nonlinear Schrödinger equation. J Differential Equations, 92: 317–330 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 87: 567–576 (1983)

    Article  MATH  Google Scholar 

  10. Zhang J. Cross-constrained variational problem and nonlinear Schrödinger equation. In: Cucker F, Rojas J M, eds. Proceedings of the Smalefest 2000, Foundations of Computational Math Series. New Jersey: World Scientific, 2002

    Google Scholar 

  11. Zhang J. Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal, 48: 191–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Weinstein M I. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Comm Partial Differential Equations, 11: 545–565 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Merle F, Tsutsumi Y. L 2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J Differential Equations, 84: 205–214 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Merle F. On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Comm Pure Appl Math, 45(2): 203–254 (1992)

    Article  MathSciNet  Google Scholar 

  15. Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math J, 69(2): 427–454 (1993)

    Article  MathSciNet  Google Scholar 

  16. Merle F, Raphaël P. Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann of Math, 16: 157–222 (2005)

    Article  Google Scholar 

  17. Merle F, Raphaël P. On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent Math, 156: 565–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merle F, Raphaël P. On a sharp lower bound on the blow-up rate for the L2-critical nonlinear Schrödinger equation. J Amer Math Soc, 19: 37–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merle F, Raphaël P. Profiles and quantization of the blowup mass for critical nonlinear Schrödinger equation. Comm Math Phys, 253: 675–672 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raphaël P. Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation. Math Ann, 331: 577–609 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fibich G, Merle F, Raphaël P. Numerical proof of a spectral property related to singularity formulation for the L 2 critical nonlinear Schrödinger equation. Phys D, 220: 1–13 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oh Y G. Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J Differential Equations, 81: 255–274 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cazenave T. Semilinear Schrödinger equations. In: Courant Lecture Notes in Mathematics, Vol. 10. Providence, RI: American Mathematical Society, 2003

    Google Scholar 

  24. Zhang J. Sharp threshold for blowup and global existence in nonlinear Schrödinger equation under a harmonic potential. Comm Partial Differential Equations, 30: 1429–1443 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shu J, Zhang J. Nonlinear Schrödinger equation with harmonic potential. J Math Phys, 47: 063503-1-6 (2006)

    Google Scholar 

  26. Chen G G, Zhang J. Sharp threshold of global existence for nonlinear Gross-Pitaevskii equation in ℝN. IMA J Appl Math, 71: 232–240 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Carles R. Critical nonlinear Schrödinger equations with and without harmonic potential. Math Models Methods Appl Sci, 12: 1513–1523 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li X G, Zhang J. Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential. Differential Integral Equations, 19: 761–771 (2006)

    MathSciNet  Google Scholar 

  29. Wen S C, Xu W C, Guo Q, et al. Evolution of solitons of nonlinear Schrödinger equation with variable parameters. Sci China Ser A, 40(12): 1300–1304 (1997)

    Article  MathSciNet  Google Scholar 

  30. Kwong M K. Uniqueness of positive solutions of Δuu + u p = 0 in ℝn. Arch Ration Mech Anal, 105: 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 55: 149–162 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  32. Brézis H, Lieb E H. Minimum action solutions of some vector field equations. Comm Math Phys, 96: 97–113 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann Inst H Poincaré Anal Non Non Linéeaire, 1: 109–145 (1984)

    MATH  Google Scholar 

  34. Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann Inst H Poincaré Anal Non Linéaire, 1: 223–283 (1984)

    MATH  Google Scholar 

  35. Brézis H, Lieb E H. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 88: 486–490 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiHui Zhu.

Additional information

This work was supported by National Natural Science Foundation of China (Grant No. 10771151) and Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 2006A068)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Zhang, J. & Li, X. Limiting profile of blow-up solutions for the Gross-Pitaevskii equation. Sci. China Ser. A-Math. 52, 1017–1030 (2009). https://doi.org/10.1007/s11425-008-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0140-x

Keywords

MSC(2000)

Navigation