Skip to main content

Advertisement

Log in

Theoretically driven educational app design: the creation of a mathematics app

  • Development Article
  • Published:
Educational technology research and development Aims and scope Submit manuscript

Abstract

The present paper documents the design and development of a mobile mathematics application targeted to improve magnitude representation skills. Educational experts worked together with an app developer with the goal of creating an educational app as a math learning tool for children 5–8 years old. The description of the app design processes includes five core elements that we believe are central to the creation of a theory driven educational app. Creating a theory driven educational app is a difficult task; it involves a set of complex decisions as illustrated in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert, D. (2015). Pushing push—Have notifications come of age? Retrieved from https://www.sitepoint.com/pushing-push-notifications-come-age/

  • Ally, M., & Tsinakos, A. (2014). Increasing access through mobile learning. Commonwealth of Learning (COL).

    Book  Google Scholar 

  • Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., De Freitas, S., Louchart, S., ... De Gloria, A. (2015). Mapping learning and game mechanics for serious games analysis. British Journal of Educational Technology, 46(2), 391–411. https://doi.org/10.1111/bjet.12113

  • Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333–339.

    Article  Google Scholar 

  • Berkowitz, T., Schaeffer, M. W., Maloney, E. A., Peterson, L., Gregor, C., Levine, S. C., & Beilock, S. L. (2015). Math at home adds up to achievement in school. Science, 350(6257), 196–198. https://doi.org/10.1126/science.aac7427

    Article  Google Scholar 

  • Blair, K. P. (2013). Learning in critter corral: Evaluating three kinds of feedback in a preschool math app. Proceedings of the 12th international conference on interaction design and children (pp. 372–375). ACM. https://doi.org/10.1145/2485760.2485814

    Chapter  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031. https://doi.org/10.1111/j.1467-8624.2008.01173.x

    Article  Google Scholar 

  • Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research—A systematic review of recent trends. Computers & Education, 114, 255–273. https://doi.org/10.1016/j.compedu.2017.07.004

    Article  Google Scholar 

  • Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1), 32–44. https://doi.org/10.1016/j.cognition.2010.09.005

    Article  Google Scholar 

  • Burgstahler, S. (2012). Universal design in education: Process, principles and applications. DO-IT.

    Google Scholar 

  • Callaghan, M. N., & Reich, S. M. (2018). Are educational preschool apps designed to teach? An analysis of the app market. Learning, Media and Technology, 43(3), 280–293. https://doi.org/10.1080/17439884.2018.1498355

    Article  Google Scholar 

  • Case, R., Okamoto, Y., Griffin, S., McKeough, A., Bleiker, C., Henderson, B., ... Keating, D. P. (1996). The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, i-295. https://doi.org/10.2307/1166077

  • Cayton-Hodges, G. A., Feng, G., & Pan, X. (2015). Tablet-based math assessment: What can we learn from math apps? Journal of Educational Technology & Society, 18(2), 3–20.

    Google Scholar 

  • Cezarotto, M. A., & Battaiola, A. L. (2016). Game design recommendations focusing on children with developmental dyscalculia. International conference on learning and collaboration technologies (pp. 463–473). Springer. https://doi.org/10.1007/978-3-319-39483-1_42

    Chapter  Google Scholar 

  • Cheung, A. C., & Slavin, R. E. (2013). The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis. Educational Research Review, 9, 88–113. https://doi.org/10.1016/j.edurev.2013.01.001

    Article  Google Scholar 

  • Cohen, M., Hadley, M., & Frank, M. (2011). Young children, apps & iPad. US Department of Education Ready to Learn Program, 200, 5–10.

    Google Scholar 

  • Conole, G., Dyke, M., Oliver, M., & Seale, J. (2004). Mapping pedagogy and tools for effective learning design. Computers & Education, 43(1–2), 17–33. https://doi.org/10.1016/j.compedu.2003.12.018

    Article  Google Scholar 

  • Denham, A. R. (2016). Improving the design of a learning game through intrinsic integration and playtesting. Technology, Knowledge and Learning, 21(2), 175–194. https://doi.org/10.1007/s10758-016-9280-1

    Article  Google Scholar 

  • Dubé, A. K., Alam, S. S., Xu, C., Wen, R., & Kacmaz, G. (2019). Tablets as elementary mathematics education tools: Are they effective and why. Mathematical learning and cognition in early childhood (pp. 223–248). Springer. https://doi.org/10.1007/978-3-030-12895-1_13

    Chapter  Google Scholar 

  • Dubé, A. K., Kacmaz, G., Wen, R., Alam, S. S., & Xu, C. (2020). Identifying quality educational apps: Lessons from ‘top’ mathematics apps in the Apple App Store. Education and Information Technologies, 25, 5389–540. https://doi.org/10.1007/s10639-020-10234-z

    Article  Google Scholar 

  • Dubé, A. K., & Keenan, A. (2016). Are games a viable home numeracy practice? In B. Blevins-Knabe & A. M. B. Austin (Eds.), Early childhood mathematics skill development in the home environment (pp. 165–184). Springer. https://doi.org/10.1007/978-3-319-43974-7_10

    Chapter  Google Scholar 

  • Dubé, A. K., & McEwen, R. N. (2015). Do gestures matter? The implications of using touchscreen devices in mathematics instruction. Learning and Instruction, 40(C), 89–98. https://doi.org/10.1016/j.learninstruc.2015.09.002

    Article  Google Scholar 

  • Fabian, K., Topping, K. J., & Barron, I. G. (2016). Mobile technology and mathematics: Effects on students’ attitudes, engagement, and achievement. Journal of Computers in Education, 3(1), 77–104. https://doi.org/10.1007/s40692-015-0048-8

    Article  Google Scholar 

  • Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539. https://doi.org/10.1037/a0025510

    Article  Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986. https://doi.org/10.3758/s13428-011-0097-5

    Article  Google Scholar 

  • Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293–304. https://doi.org/10.1177/00222194050380040301

    Article  Google Scholar 

  • Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406. https://doi.org/10.1016/j.cognition.2010.02.002

    Article  Google Scholar 

  • Gray, P. (2013). Free to learn: Why unleashing the instinct to play will make our children happier, more self-reliant, and better students for life. Basic Books.

    Google Scholar 

  • Gröger, C., Silcher, S., Westkämper, E., & Mitschang, B. (2013). Leveraging apps in manufacturing. A framework for app technology in the enterprise. Procedia CIRP, 7, 664–669. https://doi.org/10.1016/j.procir.2013.06.050

    Article  Google Scholar 

  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457. https://doi.org/10.1037/a0012682

    Article  Google Scholar 

  • Harari, G. M., Müller, S. R., Stachl, C., Wang, R., Wang, W., Bühner, M., Rentfrow, P. J., Campbell, A. T., & Gosling, S. D. (2019). Sensing sociability: Individual differences in young adults’ conversation, calling, texting, and app use behaviors in daily life. Journal of Personality and Social Psychology. https://doi.org/10.1037/pspp0000245

    Article  Google Scholar 

  • Hawes, Z., Nosworthy, N., Archibald, L., & Ansari, D. (2019). Kindergarten children’s symbolic number comparison skills predict 1st grade mathematics achievement: Evidence from a two-minute paper-and-pencil test. Learning and Instruction, 59, 21–33.

    Article  Google Scholar 

  • Highfield, K., & Goodwin, K. (2013). Apps for mathematics learning: A review of ‘educational’ apps from the iTunes App Store. In V. Steinle, L. Ball, & C. Bardini (Eds.), Mathematics education: Yesterday, today and tomorrow. Proceedings of the 36th annual conference of the Mathematics Education Research Group of Australasia (pp. 378–385). MERGA.

    Google Scholar 

  • Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 430–511. https://doi.org/10.1080/07370000802177235

    Article  Google Scholar 

  • Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting education in “educational” apps: Lessons from the science of learning. Psychological Science in the Public Interest, 16(1), 3–34. https://doi.org/10.1177/1529100615569721

    Article  Google Scholar 

  • Hourcade, J. P. (2008). Interaction design and children. Foundations and Trends® in Human—Computer Interaction, 1(4), 277–392. https://doi.org/10.1177/00222194050380040901

    Article  Google Scholar 

  • Joyce, B., Weil, M., & Showers, B. (1992). Models of teaching (4th ed.). Boston: Allyn & Bacon.

    Google Scholar 

  • Kafai, Y. B. (2016). From computational thinking to computational participation in K–12 education. Communications of the ACM, 59(8), 26–27. https://doi.org/10.1145/2955114

    Article  Google Scholar 

  • Kalchman, M., Moss, J., & Case, R. (2001). Psychological models for the development of mathematical understanding: Rational numbers and functions. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 1–38). Erlbaum.

    Google Scholar 

  • Kato, P. M., Cole, S. W., Bradlyn, A. S., & Pollock, B. H. (2008). A video game improves behavioral outcomes in adolescents and young adults with cancer: A randomized trial. Pediatrics, 122(2), e305–e317. https://doi.org/10.1542/peds.2007-3134

    Article  Google Scholar 

  • Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., Zimmerhackl, L. B., ... Ischebeck, A. (2006). Neural correlates of the number–size interference task in children. Neuroreport17(6), 587

  • Ke, F. (2016). Designing and integrating purposeful learning in game play: A systematic review. Educational Technology Research and Development, 64(2), 219–244. https://doi.org/10.1007/s11423-015-9418-1

    Article  Google Scholar 

  • Kebritchi, M., & Hirumi, A. (2008). Examining the pedagogical foundations of modern educational computer games. Computers & Education, 51(4), 1729–1743. https://doi.org/10.1016/j.compedu.2008.05.004

    Article  Google Scholar 

  • Kloos, H., & Van Orden, G. C. (2005). Can a preschooler’s mistaken belief benefit learning? Swiss Journal of Psychology, 64(3), 195–205. https://doi.org/10.1024/1421-0185.64.3.195

    Article  Google Scholar 

  • Ku, O., Chen, S. Y., Wu, D. H., Lao, A. C., & Chan, T. W. (2014). The effects of game-based learning on mathematical confidence and performance: High ability vs. low ability. Journal of Educational Technology & Society, 17(3), 65–78.

    Google Scholar 

  • Larkin, K. (2015). “An app! an app! my kingdom for an app”: An 18-month quest to determine whether apps support mathematical knowledge building. Digital games and mathematics learning (pp. 251–276). Springer. https://doi.org/10.1007/978-94-017-9517-3_13

    Chapter  Google Scholar 

  • Laurillard, D. (2016). Learning number sense through digital games with intrinsic feedback. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.3116

    Article  Google Scholar 

  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x

    Article  Google Scholar 

  • Martens, M., Rinnert, G. C., & Andersen, C. (2018). Child-centered design: Developing an inclusive letter writing app. Frontiers in Psychology, 6(9), 2277. https://doi.org/10.3389/fpsyg.2018.02277

    Article  Google Scholar 

  • Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and non-symbolic magnitude processing in the first year of formal schooling. PLoS ONE, 11(3), e0149863. https://doi.org/10.1371/journal.pone.0149863

    Article  Google Scholar 

  • Mayer, R. E. (2014). Computer games for learning: An evidence-based approach. The MIT Press.

    Book  Google Scholar 

  • McEwen, R. N., & Dubé, A. K. (2015). Engaging or distracting: Children’s tablet computer use in education. Journal of Educational Technology & Society, 18(4), 9–23.

    Google Scholar 

  • McEwen, R., & Dubé, A. K. (2016). Intuitive or Idiomatic? An information studies and cognitive psychology study of child-tablet computer interaction. Journal of the Association for Information Science and Technology, 67, 1169–1181.

    Article  Google Scholar 

  • McEwen, R., & Dubé, A. K. (2017). Understanding tablets from early childhood to adulthood: Encounters with touch technology. Routledge. https://doi.org/10.4324/9781315389486

    Book  Google Scholar 

  • Melhuish, K., & Falloon, G. (2010). Looking to the future: M-learning with the iPad. Computers in New Zealand Schools: Learning, Leading, Technology, 22, 1–16.

    Google Scholar 

  • Mera, C., Ruiz, G., Aguilar, M., Aragón, E., Delgado, C., Menacho, I., ... Navarro, J. I. (2019). Coming together: R&D and children’s entertainment company in designing apps for learning early Math. Frontiers in Psychology, 9, 2751. https://doi.org/10.3389/fpsyg.2018.02751

  • Merkley, R., & Ansari, D. (2010). Using eye tracking to study numerical cognition: The case of the ratio effect. Experimental Brain Research, 206(4), 455–460. https://doi.org/10.1007/s00221-010-2419-8

    Article  Google Scholar 

  • Moss, J., Bruce, C. D., & Bobis, J. (2016). Young children’s access to powerful mathematical ideas: A review of current challenges and new developments in the early years. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 153–190). Routledge.

    Google Scholar 

  • Moyer-Packenham, S., Salkind, G., & Bolyard, J. J. (2008). Virtual manipulatives used by K-8 teachers for mathematics instruction: The influence of mathematical, cognitive, and pedagogical fidelity. Contemporary Issues in Technology and Teacher Education, 8(3), 202–218.

    Google Scholar 

  • Mozelius, P., Fagerström, A., & Söderquist, M. (2017). Motivating factors and tangential learning for knowledge acquisition in educational games. Electronic Journal of e-Learning, 15(4), 343–354.

    Google Scholar 

  • Mussolin, C., Noël, M. P., Pesenti, M., Grandin, C., & De Volder, A. (2013). Neural correlates of the numerical distance effect in children. Frontiers in Psychology, 4, 663. https://doi.org/10.3389/fpsyg.2013.00663

    Article  Google Scholar 

  • Naismith, L., Lonsdale, P., Vavoula, G., & Sharples, M. (2004). ‘Mobile technologies and learning’ in futurelab literature review series. Report No. 11, Futurelab. NESTA (National Endowment for Science Technology and the Arts), Bristol, UK.

  • Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology, 143(1), 255. https://doi.org/10.1037/a0030825

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32(1), 1–8.

    Article  Google Scholar 

  • Patino, A., Romero, M., & Proulx, J. N. (2016). Analysis of game and learning mechanics according to the learning theories. 2016 8th International conference on games and virtual worlds for serious applications (VS-GAMES) (pp. 1–4). IEEE. https://doi.org/10.1109/VS-GAMES.2016.7590337

    Chapter  Google Scholar 

  • Pham, X. L., & Chen, G. D. (2019). PACARD: A New interface to increase mobile learning app engagement, distributed through App Stores. Journal of Educational Computing Research, 57(3), 618–645. https://doi.org/10.1177/0735633118756298

    Article  Google Scholar 

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ... Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012

  • Pilli, O., & Aksu, M. (2013). The effects of computer-assisted instruction on the achievement, attitudes and retention of fourth grade mathematics students in North Cyprus. Computers & Education, 62, 62–71. https://doi.org/10.1016/j.compedu.2012.10.010

    Article  Google Scholar 

  • Plass, J. L., Frye, J., Kinzer, C., Homer, B., & Perlin, K. (2011). Learning mechanics and assessment mechanics for games for learning (G4LI White Paper 01–2011). Games for Learning Institute. https://doi.org/10.13140/2.1.3127.1201

    Book  Google Scholar 

  • Plowman, L., Stevenson, O., Stephen, C., & McPake, J. (2012). Preschool children’s learning with technology at home. Computers & Education, 59(1), 30–37. https://doi.org/10.1016/j.compedu.2011.11.014

    Article  Google Scholar 

  • Porter, J. (2018). Entering Aladdin’s cave: Developing an app for children with Down syndrome. Journal of Computer Assisted Learning, 34(4), 429–439. https://doi.org/10.1111/jcal.12246

    Article  Google Scholar 

  • Proulx, J.-N., Romero, M., & Arnab, S. (2016). Learning mechanics and game mechanics under the perspective of self-determination theory to foster motivation in digital game-based learning. Simulation & Gaming, 48(1), 81–97. https://doi.org/10.1177/1046878116674399

    Article  Google Scholar 

  • Salen, K., Tekinbaş, K. S., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. MIT press.

    Google Scholar 

  • Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108(3), 662–674. https://doi.org/10.1016/j.cognition.2008.05.007

    Article  Google Scholar 

  • Schaefer, C., & Millman, H. L. (1994). How to help children with common problems. Jason Aronson Inc.

    Google Scholar 

  • Senge, P. M. (2006). The fifth discipline: The art and practice of the learning organization. Broadway Business.

    Google Scholar 

  • Shuler, C., Levine, Z., & Ree, J. (2012). iLearn II An analysis of the education category of Apple’s app store. The Joan Ganz Cooney Center.

    Google Scholar 

  • Sicart, M. (2008). Defining game mechanics. Game Studies, 8(2), 1–14.

    Google Scholar 

  • Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361. https://doi.org/10.1111/desc.12395

    Article  Google Scholar 

  • Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144–150. https://doi.org/10.1111/cdep.12077

    Article  Google Scholar 

  • Skinner, B. F. (1968). The technology of teaching. Appleton-Century-Crofts.

    Google Scholar 

  • Slavin, R. E., & Lake, C. (2008). Effective programs in elementary mathematics: A best-evidence synthesis. Review of Educational Research, 78(3), 427–515. https://doi.org/10.3102/0034654308317473

    Article  Google Scholar 

  • Statista Research Development. (July 14, 2021). Most popular Apple App Store categories in June 2021, by share of available app. Retrieved from https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/

  • Tsay, C.H.-H., Kofinas, A., & Luo, J. (2018). Enhancing student learning experience with technology-mediated gamification: An empirical study. Computers & Education, 121, 1–17. https://doi.org/10.1016/j.compedu.2018.01.009

    Article  Google Scholar 

  • Tucker, S. I., Moyer-Packenham, P. S., Shumway, J. F., & Jordan, K. E. (2016). Zooming in on children’s thinking: How a number line app revealed, concealed, and developed children’s number understanding. Australian Primary Mathematics Classroom, 21(1), 23.

    Google Scholar 

  • Vatavu, R. D., Cramariuc, G., & Schipor, D. M. (2015). Touch interaction for children aged 3 to 6 years: Experimental findings and relationship to motor skills. International Journal of Human—Computer Studies, 74, 54–76. https://doi.org/10.1016/j.ijhcs.2014.10.007

    Article  Google Scholar 

  • Warwick, J. (2008). Mathematical self-efficacy and student engagement in the mathematics classroom. MSOR Connections, 8(3), 31–37. https://doi.org/10.11120/msor.2008.08030031

    Article  Google Scholar 

  • Willoughby, D., Evans, M. A., & Nowak, S. (2015). Do ABC eBooks boost engagement and learning in preschoolers? An experimental study comparing eBooks with paper ABC and storybook controls. Computers & Education, 82, 107–117. https://doi.org/10.1016/j.compedu.2014.11.008

    Article  Google Scholar 

  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human behavior, learning, and the developing brain: Atypical Development (Vol. 2, pp. 212–237). Guilford Press.

    Google Scholar 

  • Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioural and Brain Functions, 2, 1–14.

    Article  Google Scholar 

  • Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220–251. https://doi.org/10.1016/0010-0285(92)90008-P

    Article  Google Scholar 

  • Zichermann, G., & Cunningham, C. (2011). Gamification by design: Implementing game mechanics in web and mobile apps. O’Reilly Media Inc.

    Google Scholar 

Download references

Funding

This study was funded by Social Sciences and Humanities Research Council of Canada (Grant No. 430-2017-00230).

Author information

Authors and Affiliations

Authors

Contributions

Author A is listed as a developer in the credits of the application but is not an employee of the company or member of its board.

Corresponding author

Correspondence to Sabrina Shajeen Alam.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article. The authors collaborated with a company to develop the app so that it can be used for research. The app was then further developed by the company for commercial purposes.

Informed consent

Not applicable.

Research involving human and/or animal participants

No ethical approval was required as there were no human participants and/or animals involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S.S., Dubé, A.K. Theoretically driven educational app design: the creation of a mathematics app. Education Tech Research Dev 70, 1305–1327 (2022). https://doi.org/10.1007/s11423-022-10109-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-022-10109-9

Keywords

Navigation