Skip to main content

Advertisement

Log in

Ropinirole involved in a fatal case: blood and urinary concentrations

  • Case Report
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

Ropinirole is an antiparkinsonian  drug and has recently been suggested to be effective in amyotrophic lateral sclerosis. It is expected that ropinirole prescriptions will increase in the near future. However, the fatal concentration in blood is unclear at this time. Therefore, we report a fatal case involving ropinirole intoxication and discuss the fatal concentrations with reference to several autopsy cases involving ropinirole.

Methods

Ropinirole was quantified in femoral vein blood, cardiac blood, and urine from five autopsy cases in which ropinirole was detected by drug screening in our laboratory. One is a ropinirole intoxication case (this report) and the others  were non-intoxication cases. Their ropinirole concentrations were compared and discussed.

Results

The ropinirole concentration in this case was 100 ng/mL in femoral blood, 160 ng/mL in cardiac blood, and 1840 ng/mL in urine. The ropinirole concentrations in the four non-ropinirole poisoning cases were 7–35 ng/mL (mean: 24 ng/mL) in femoral blood, 13–100 ng/mL (mean: 60 ng/mL) in cardiac blood, and 140–1090 ng/mL (mean: 640 ng/mL) in urine. Cardiac/peripheral ratios were in the range of 1.6–2.1 (mean 1.8).

Conclusions

There were no obvious signs of overdose, and the high cardiac/peripheral blood ratio suggested that postmortem redistribution may have occurred, but the  peripheral blood ropinirole concentration (100 ng/mL) was obviously higher than that reported in the previous fatal case of ropinirole poisoning (64 ng/mL). Based on these results, the cause of death in this case was considered to be shock and fatal arrhythmia due to ropinirole poisoning. This case provides important data on postmortem blood and urinary levels of ropinirole poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. CMAJ 188:1157–1165. https://doi.org/10.1503/cmaj.151179 (open access article)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Delamarre A, Meissner WG (2017) Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med 46:175–181. https://doi.org/10.1016/j.lpm.2017.01.001 (open access article)

    Article  PubMed  Google Scholar 

  3. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global regional and national incidence, prevalence and years lived with disability for 310 disease and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6001 (open access article)

    Article  Google Scholar 

  4. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, Abbott RD, Savica R, Van Den Eeden SK, Willis AW, Tanner CM, Parkinson’s Foundation P4 Group (2018) Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis 4:21. https://doi.org/10.1038/s41531-018-0058-0 (open access article)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vidaihlet MJ, Bonnet AM, Belal S, Dubois B, Marle C, Agid Y (1990) Ropinirole without levodopa in Pakinson’s disease. Lancet 336:316–317. https://doi.org/10.1016/0140-6736(90)91855-5

    Article  Google Scholar 

  6. Trenkwalder C, Hening WA, Montagna P, Oertel WH, Allen RP, Walters AS, Costa J, Stiasny-Kolster K, Sampaio C (2008) Treatment of restless legs syndrome: an evidence-based review and implications for clinical practice. Mov Disord 23:2267–2302. https://doi.org/10.1002/mds.22254 (open access article)

    Article  PubMed  Google Scholar 

  7. Fujimori K, Ishikawa M, Otomo A, Atsuta N, Nakamura R, Akiyama T, Hadano S, Aoki M, Saya H, Sobue G, Okano H (2018) Modeling sporadic ALS in IPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 24:1579–1589. https://doi.org/10.1038/s41591-018-0140-5

    Article  CAS  PubMed  Google Scholar 

  8. Morimoto S, Takahashi S, Fukushima K, Saya H, Suzuki N, Aoki M, Okano H, Nakahara J (2019) Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis–protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation phase I/IIa clinical trial (ROPALS trial). Regen Ther 11:143–166. https://doi.org/10.1016/j.reth.2019.07.002 (open access article)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Okano H, Yasuda D, Fujimori K, Morimoto S, Takahashi S (2020) Ropinirole, a new ALS drug candidate developed using iPSCs. Trends Pharmacol Sci 41:99–109. https://doi.org/10.1016/j.tips.2019.12.002 (open access article)

    Article  CAS  PubMed  Google Scholar 

  10. Frucht S, Rogers JD, Greene PE, Gordon MF, Fahn S (1999) Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology 52:1908–1910. https://doi.org/10.1212/wnl.52.9.1908

    Article  CAS  PubMed  Google Scholar 

  11. Duband S, Bidat C, Gaillard Y, Rochet M, Camdessanche JP, Péoc’h M (2012) A fatal intoxication case involving ropinirole. J Forensic Leg Med 19:422–425. https://doi.org/10.1016/j.jflm.2012.04.013 

    Article  PubMed  Google Scholar 

  12. Simkó J, Szentandrássy N, Harmati G, Bárándi L, Horváth B, Magyar J, Bányász T, Lórincz I, Nánási PP (2010) Effects of ropinirole on action potential characteristics and the underlying ion currents in canine ventricular myocytes. Naunyn Schmied Arch Pharmacol 382:213–220. https://doi.org/10.1007/s00210-010-0538-1

    Article  CAS  Google Scholar 

  13. Di Giacopo R, Fasano A, Fenici R, Loria G, Bentivoglio AR (2010) Rare and serious cardiac side effects during ropinirole titration. Mov Disord 25:1509–1510. https://doi.org/10.1002/mds.23115

    Article  PubMed  Google Scholar 

  14. Nagasawa S, Saka K, Yamagishi Y, Yajima D, Chiba F, Yamaguchi R, Torimitsu S, Iwase H (2021) Association between sexual activity-related death and non-prescription use of phosphodiesterase type 5 inhibitors. Leg Med 48:101815. https://doi.org/10.1016/j.legalmed.2020.101815

    Article  CAS  Google Scholar 

  15. Usui K, Hayashizaki K, Hashiyada M, Funayama M (2012) Rapid drug extraction from human whole blood using a modified QuEChERS extraction method. Leg Med 14:286–296. https://doi.org/10.1016/j.legalmed.2012.04.008

    Article  CAS  Google Scholar 

  16. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine (2018) Bioanalytical method validation: guidance for industry. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed 24 May 2018

  17. Nishikawa N, Nagai M, Moritoyo T, Yabe H, Nomoto M (2009) Plasma amantadine concentrations in patients with Parkinson’s disease. Parkinsonism Relat Disord 15:351–353. https://doi.org/10.1016/j.parkreldis.2008.08.005 (open access article)

    Article  CAS  PubMed  Google Scholar 

  18. Sande MA, Mandell GL (1980) Antimicrobial agents, chap 54. In: Goodman and Gilman’s the pharmacological basic of therapeutic, 6th edn. Macmillan Publishers, New York, p 1241

  19. Schulz M, Schmoldt A, Andersen-Streichert H, Iwersen-Bergmann S (2020) Revisited: therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Crit Care 24:195. https://doi.org/10.1186/s13054-020-02915-5 (open access article)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dalpe-Scott M, Degouffe M, Garbutt D, Drost M (1955) A comparison of drug concentrations in postmortem cardiac and peripheral blood in 320 cases. Can Soc Sci J 28:113–121. https://doi.org/10.1080/00085030.1995.10757474

    Article  Google Scholar 

  21. Tompson DJ, Vearer D (2007) Steady-state pharmacokinetic properties of a 24-hour prolonged-release formulation of ropinirole: results of two randomized studies in patients with Parkinson’s disease. Clin Ther 29:2654–2666. https://doi.org/10.1016/j.clinthera.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  22. Hattori N, Hasegawa K, Sakamoto T (2012) Pharmacokinetics and effect of food after oral administration of prolonged release tablets of ropinirole hydrochloride in Japanese patients with Parkinson’s disease. J Clin Pharm Ther 37:571–577. https://doi.org/10.1111/j.1365-2710.2012.01336.x

    Article  CAS  PubMed  Google Scholar 

  23. Perea E, Robbins BV, Hutto B (2006) Psychosis related to ropinirole. Am J Psychiatry 163:547–548. https://doi.org/10.1176/appi.ajp.163.3.547

    Article  PubMed  Google Scholar 

  24. Navacerrada F, González-Alonso MR, Alonso-Navarro H, Pilo-de-la-Fuente B, Plaza-Nieto JF, Jiménez-Jiménez FJ (2011) Liver toxicity possibly related with ropinirole use in the treatment of restless legs syndrome. Eur J Neurol 18:e65. https://doi.org/10.1111/j.1468-1331.2010.03317.x

    Article  CAS  PubMed  Google Scholar 

  25. Mannelli M, Lazzeri C, Ianni L, La Villa G, Pupilli C, Bellini F, Serio M, Franchi F (1997) Dopamine and sympathoadrenal activity in man. Clin Exp Hypertens 19:163–179. https://doi.org/10.3109/10641969709080813

    Article  CAS  PubMed  Google Scholar 

  26. Yeh T-L, Yang Y-K, Chiu N-T, Yao W-J, Yeh S-J, Wu J-S, Chuang J-I, Chang SH (2006) Correlation between striatal dopamine D2/D3 receptor binding and cardiovascular activity in healthy subjects. Am J Hypertens 19:964–969. https://doi.org/10.1016/j.amjhyper.2006.03.005 (open access article)

    Article  CAS  PubMed  Google Scholar 

  27. Hurst RS, Higdon NR, Lawson JA, Clark MA, Rutherford-Root KL, McDonald WG, Haas JV, McGrath JP, Meglasson MD (2003) Dopamine receptor agonists differ in their actions on cardiac ion channels. Eur J Pharmacol 482:31–37. https://doi.org/10.1016/j.ejphar.2003.09.054

    Article  CAS  PubMed  Google Scholar 

  28. Humphrey SJ, Turman CN, Curry JT, Wheeler GJ (2006) Cardiovascular and electrocardiographic effects of the dopamine receptor agonists ropinirole, apomorphine, and PNU-142774E in conscious beagle dogs. J Cardiovasc Pharmacol 47:337–347. https://doi.org/10.1097/01.fjc.0000205983.05771.f5

    Article  CAS  PubMed  Google Scholar 

  29. Baselt RC (2017) Disposition of toxic drugs and chemicals in man, 11th edn. Biomedical Publications, Seal Beach, p 1805

    Google Scholar 

Download references

Acknowledgements

We thank Vikas Narang, chief operating officer from  Editage for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayaka Nagasawa.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to conflicts of interest.

Ethics approval

All the procedures performed in this study were in accordance with the ethical standards set by our institutional review board, and the 1964 Helsinki declaration and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagasawa, S., Yamaguchi, R., Saka, K. et al. Ropinirole involved in a fatal case: blood and urinary concentrations. Forensic Toxicol 40, 173–179 (2022). https://doi.org/10.1007/s11419-021-00593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-021-00593-8

Keywords

Navigation