Skip to main content
Log in

Matrix-assisted laser desorption/ionization in-source decay mass spectrometry analysis of human insulin and insulin analogues for the identification of insulin from insulin preparations

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

The identification of human insulin and insulin analogues is necessary in forensic investigations. However, there is no quick and accurate method to identify them (components from insulin preparations). In this study, we aimed to develop a method to elucidate differences in amino acid sequences among human insulin and six insulin analogues.

Methods

The mass spectra of seven insulin preparations were measured using the in-source decay method in matrix-assisted laser desorption/ionization (MALDI-ISD) with 1,5-diaminonaphthalene MALDI matrix.

Results

The mass spectra measured in the spiral mode yielded a series of c ion peaks that reflected the amino acid sequence in the C-terminus of the insulin B-chain and could discriminate the seven insulin preparations.

Conclusions

The MALDI-ISD method is a rapid and convenient approach to identify human insulin and six insulin analogues that are components of all insulin preparations sold in Japan. In particular, this method can discriminate human insulin from insulin lispro, both of which have identical molecular weights, and therefore identifying them is difficult using conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Owens DR, Zinman B, Bolli GB (2001) Insulin today and beyond. Lancet 358:739–746. https://doi.org/10.1016/S0140-6736(01)05842-1

    Article  CAS  PubMed  Google Scholar 

  2. Hirsch IB (2005) Insulin analogues. N Engl J Med 352:174–183. https://doi.org/10.1056/NEJMra040832

    Article  CAS  PubMed  Google Scholar 

  3. Barnett AH, Owens DR (1997) Insulin analogues. Lancet 349:47–51. https://doi.org/10.1016/S0140-6736(96)06032-1

    Article  CAS  PubMed  Google Scholar 

  4. Marks V (2009) Murder by insulin: suspected, purported and proven—a review. Drug Test Anal 1:162–176. https://doi.org/10.1002/dta.38

    Article  CAS  PubMed  Google Scholar 

  5. Matsumura M, Nakatani M, Dohmeki N, Yanagi K, Ikeda S, Hanba N, Moriyama T, Aso Y (2014) Hypoglycemic attacks in diabetic patients while driving an automobile. J Jpn Diabet Soc 57:329–336. https://doi.org/10.11213/tonyobyo.57.329

    Article  Google Scholar 

  6. Iijima S, Kase M, Sagara M, Katoh K, Shimizu M, Nishida M, Tomotsune T, Tanaka S, Aoki C, Johjima T, Suzuki K, Kuroda H, Aso Y (2015) A case of type 1 diabetic patient who attempted suicide by overdose injection of insulin degludec and lispro. J Jpn Diabet Soc 58:707–714. https://doi.org/10.11213/tonyobyo.58.707

    Article  Google Scholar 

  7. National Research Institute of Police Science (2015) Annual Case Reports of Drug and Toxic Poisoning in Japan No.58. 28

  8. Havelund S, Ribel U, Hubálek F, Hoeg-Jensen T, Wahlund PO, Jonassen I (2015) Investigation of the physico-chemical properties that enable co-formulation of basal insulin degludec with fast-acting insulin aspart. Pharmaceut Res 32:2250–2258. https://doi.org/10.1007/s11095-014-1614-x

    Article  CAS  Google Scholar 

  9. Pampanelli S, Torline E, Ialli C, Del Sindaco P, Ciofetta M, Lepore M, Bartocci L, Brunetti P, Bolli GB (1995) Improved postprandial metabolic control after subcutaneous injection of a short-acting insulin analog in IDDM of short duration with residual pancreatic beta-cell function. Diabet Care 18:1452–1459. https://doi.org/10.2337/diacare.18.11.1452

    Article  CAS  Google Scholar 

  10. Raskin P, Guthrie RA, Leiter L, Riis A, Javanovic L (2000) Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabet Care 23:583–588. https://doi.org/10.2337/diacare.23.5.583

    Article  CAS  Google Scholar 

  11. Dailey G, Rosenstock J, Moses RG, Ways K (2004) Insulin glulisine provides improved glycemic control in patients with type 2 diabetes. Diabet Care 27:2363–2368. https://doi.org/10.2337/diacare.27.10.2363

    Article  CAS  Google Scholar 

  12. Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA (2000) Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. U.S. Study Group of Insulin Glargine in Type 1 Diabetes. Diabet Care 23:639–643. https://doi.org/10.2337/diacare.23.5.639

    Article  CAS  Google Scholar 

  13. Hermansen K, Madsbad S, Perrild H, Kristensen A, Axelsen M (2001) Comparison of the soluble basal insulin analog insulin detemir with NPH insulin: a randomized open crossover trial in type 1 diabetic subjects on basal-bolus therapy. Diabet Care 24:296–301. https://doi.org/10.2337/diacare.24.2.296

    Article  CAS  Google Scholar 

  14. Birkeland KI, Home PD, Wendisch U, Ratner RE, Johansen T, Endahl LA, Lyby K, Jendle JH, Roberts AP, DeVries JH, Meneghini LF (2011) Insulin degludec in type 1 diabetes: a randomized controlled trial of a new generation ultra-long-acting insulin compared with insulin glargine. Diabet Care 34:661–665. https://doi.org/10.2337/dc10-1925

    Article  Google Scholar 

  15. Manley S, Stratton I, Clark P, Luzio S (2007) Comparison of 11 human insulin assays: implications for clinical investigation and research. Clin Chem 53:922–932. https://doi.org/10.1373/clinchem.2006.077784

    Article  CAS  PubMed  Google Scholar 

  16. Owen WE, Roberts WL (2004) Cross-reactivity of three recombinant insulin analogs with five commercial insulin immunoassays. Clin Chem 50:257–259. https://doi.org/10.1373/clinchem.2003.026625

    Article  CAS  PubMed  Google Scholar 

  17. Thevis M, Thomas A, Delahaut P, Bosseloir A, Schanzer W (2005) Qualitative determination of synthetic analogues of insulin in human plasma by immunoaffinity purification and liquid chromatography-tandem mass spectrometry for doping control purposes. Anal Chem 77:3579–3585. doi: 10.1021/ac050066i

  18. Ishii H (2007) Determination of insulin by high performance liquid chromatography/mass spectrometry (LC/MS). Jpn J Forensic Sci Tech 12:207–215. https://doi.org/10.3408/jafst.12.207

    Article  Google Scholar 

  19. Chen Z, Caulfield M, McPhaul M, Reitz R, Taylor S, Clarke N (2013) Quantitative insulin analysis using liquid chromatography-tandem mass spectrometry in a high-throughput clinical laboratory. Clin Chem 59:1349–1356. https://doi.org/10.1373/clinchem.2012.199794

    Article  CAS  PubMed  Google Scholar 

  20. Chambers E, Fountain K, Smith N, Ashraf L, Karalliedde J, Cowan D, Legido-Quigley C (2014) Multidimensional LC-MS/MS enables simultaneous quantification of intact human insulin and five recombinant analogs in human plasma. Anal Chem 86:694–702. doi: 10.1021/ac403055d

  21. Thomas A, Brinkkotter T, Schanzer W, Thevis M (2017) Simultaneous determination of insulin, DesB30 insulin, proinsulin, and C-peptide in human plasma samples by liquid chromatography coupled to high resolution mass spectrometry. Forensic Toxicol 35:106–113. https://doi.org/10.1007/s11419-016-0343-8

    Article  CAS  Google Scholar 

  22. Brown R, Lennon J (1995) Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. Anal Chem 67:3990–3999

  23. Biemann K (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom16:99–111. doi: 10.1002/bms.1200160119

  24. Katta V, Chow DT, Rohde MF (1998) Applications of in-source fragmentation of protein ions for direct sequence analysis by delayed extraction MALDI-TOF mass spectrometry. Anal Chem 70:4410–4416. https://doi.org/10.1021/ac980034d

    Article  CAS  PubMed  Google Scholar 

  25. Takayama M (2002) The characteristics of in-source decay in mass spectrometric degradation methods -hydrogen-attachment dissociation (HAD). J Mass Spectrom Soc Jpn 50:337–349. https://doi.org/10.5702/massspec.50.337

    Article  CAS  Google Scholar 

  26. Takayama M (2001) MALDI in-source decay of proteins: the mechanism of c-ion formation. Mass Spectrom (Tokyo) 5:A0044. https://doi.org/10.5702/massspectrometry.A0044

    Article  Google Scholar 

  27. Takayama M (2001) In-source decay characteristics of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 12:420–427. https://doi.org/10.1016/S1044-0305(01)00218-5

    Article  CAS  PubMed  Google Scholar 

  28. Fukuyama Y, Iwamoto S, Tanaka K (2006) Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. J Mass Spectrom 41:191–201. doi: 10.1002/jms.977

  29. Quinton L, Demeure K, Dobson R, Gilles N, Gabelica V, De Pauw E (2007) New method for characterizing highly disulfide-bridged peptides in complex mixtures: Application to toxin identification from crude venoms. J Proteome Res 6:3216–3223. doi: 10.1021/pr070142t

  30. Smargiasso N, Quinton L, De Pauw E (2012) 2-Aminobenzamide and 2-aminobenzoic acid as new MALDI matrices inducing radical mediated in-source decay of peptides and proteins. J Am Soc Mass Spectrom 23:469–474. https://doi.org/10.1007/s13361-011-0307-5

    Article  CAS  PubMed  Google Scholar 

  31. Chalkley RJ, Baker PR, Huang L, Hansen KC, Allen NP, Rexach M, Burlingame AL (2005) Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Mol Cell Proteomics 4:1194–1204. https://doi.org/10.1074/mcp.D500002-MCP200

    Article  CAS  PubMed  Google Scholar 

  32. Brown RS, Lennon JJ (1995) Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem 67:1998–2003. https://doi.org/10.1021/ac00109a015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ishikawa, Department of Brest Oncology, Tokyo Medical University for granting permission to use the MALDI-TOFMS apparatus. This study was funded by JSPS KAKENHI (grant numbers JP17H00548 (NN) and 15K08597 (TN)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobumasa Nagami.

Ethics declarations

Conflicts of Interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors, and hence does not require an ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagami, N., Itoh, Y., Arai, H. et al. Matrix-assisted laser desorption/ionization in-source decay mass spectrometry analysis of human insulin and insulin analogues for the identification of insulin from insulin preparations. Forensic Toxicol 38, 436–446 (2020). https://doi.org/10.1007/s11419-020-00532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-020-00532-z

Keywords

Navigation